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Abstract

This paper proposes a Bayesian estimation framework for a typical multi-factor model with time-

varying risk exposures to macroeconomic risk factors and corresponding premia to price U.S. publicly

traded assets. The model assumes that risk exposures and idiosynchratic volatility follow a break-

point latent process, allowing for changes at any point on time but not restricting them to change

at all points. The empirical application to 40 years of U.S. data and 23 portfolios shows that the

approach yields sensible results compared to previous two-step methods based on naive recursive es-

timation schemes, as well as a set of alternative model restrictions. A variance decomposition test

shows that although most of the predictable variation comes from the market risk premium, a number

of additional macroeconomic risks, including real output and inflation shocks, are significantly priced

in the cross-section. A Bayes factor analysis massively favors of the proposed change-point model.
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1. Introduction

Can a selected set of macroeconomic variables explain the cross-sectional behavior of U.S. stock and

bond returns, i.e., why different assets earn different average rates of return? This simple question lies at

the heart of the burgeoning field of macro-finance. Remarkably enough, the answer provided by at least

20 years of research on this crucial question has been predominantly negative (see e.g., Chan, Karceski,

and Lakonishok, 1998; McQueen and Roley, 1993; Shanken and Weinstein, 2006): although occasional

nuances to this fundamentally negative result have been reported (e.g., Flannery and Protopapadakis,

2002; Kramer, 1994; McQueen and Roley, 1993, conditioning on the state of the economy), it is common

wisdom that macroeconomic factors can hardly explain the cross-sectional dynamics of asset valuations

and returns of U.S. stock and bond portfolios. Such a disconnect between changes in aggregate variables

representing sources of systematic risk–like in the case of output and inflation growth news–and asset

returns has long represented a puzzle.

In this paper we propose and estimate through Bayesian methods a flexible parametric multi-factor,

stochastic volatility asset pricing model in which both risk exposures (betas) and the prices of a number

of macroeconomic risk factors are time-varying and effectively explain the cross-section of U.S. stock

and bond returns (see Gungor and Luger, 2013). Time variation is modelled as a latent, change-point

process. We show that an explicit parameterization of latent change-points in betas and risk premia

plays a dominant role. By comparing our baseline model with restricted versions of the same, we also

provide evidence that both stochastic volatility and infrequent but possibly large parameter instability

are key drivers of the capability of the model to capture cross-sectional return dynamics.

Drawing a precisely estimated link between time-varying betas on selected macroeconomic risk factors

and stock and bond excess returns also speaks to the very heart of finance theory, because any evidence

uncovered bears on the fundamental issue of the key features of the general pricing mechanism, called

the stochastic discount factor (SDF), underlying observed security prices. Practically, the SDF identifies

a change of measure from the objective (physical) probability to a risk-neutralized one that allows us

to price all assets and portfolios by simply discounting to the present the expected stream of future

of payoffs that they will produce before their expiration date. Such a change of measure depends on

the shape of the (aggregate) risk aversion function of investors and therefore reflects the way in which

systematic risk factors are priced in the aggregate (see e.g., Cochrane, 2005; Singleton, 2006). In our

paper we show that is both possible and useful to connect such an SDF (assumed to exist and to be

unique) and macroeconomic risks.

A related question concerns the most appropriate methods available to researchers to learn about

such the SDF that underlies the cross-section of asset returns. Our paper offers a contribution to

an extensive literature on the estimation of empirical SDFs, specializing to a particular set of linear

multi-factor models, offers a novel statistical framework to implement such models, and shows how
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this works using an empirically relevant application. With reference to an application to 40 years of

monthly data on excess returns on 23 key portfolios of securities traded in the U.S., we show that while

commonly used methods to estimate macro-based linear factor models fail to lead to sensible conclusions,

an encompassing Gibbs sampling algorithm that allows for instability in factor exposures and risk premia

using break-point processes delivers encouraging results.

Following the seminal work of Fama and MacBeth (1973), two-step multi-factor asset pricing models

(MFAPMs) have been commonly used to estimate multi-factor models. Fama-MacBeth’s (henceforth

F-MB) approach, first proposed for the plain vanilla CAPM but then extended to a wider class of linear

models, corresponds to a very simple algorithm: the risk premium on any asset or portfolio is decomposed

as the sum of risk exposures to a number of risk factors multiplied by the associated unit price for each

factor. The algorithm uses a first set of rolling window, time series regressions to obtain estimates of

the betas, followed by a second-pass set of cross-sectional (across assets) regressions that using the first-

pass risk exposures as inputs to derive time-varying estimates of the premia. The limitations of this

methodology are now well-understood:1 most inferential statements made as a result of the second-pass

would be valid if and only if one could assume that the first-pass betas were fixed in repeated samples,

which contradicts their random sample nature deriving from their being least squares estimates. Unless

additional assumptions are introduced, this creates a problem with generated regressors being used in

the second-step, which makes most of the inferential statements commonly made when the resulting

error-in-variables problems are ignored invalid (see Pagan, 1984).2 F-MB’s approach also suffers from

another problem: although identifying time-variation in risk exposures and premia with a rolling window

least square estimation is robust because it is nonparametric, the length of the window is usually chosen

in an arbitrary way and this can result in a severe loss of efficiency (see e.g., Maheu and McCurdy, 2009).

To overcome these problems, we introduce a different approach where time variation in risk expo-

sures and premia is explicitly modelled as a break-point process. Specifically, we model risk exposures

as latent stochastic processes in a mixture innovation framework as in Giordani, Kohn and van Dijk

(2007), Giordani and Kohn (2008), Groen, Paap, and Ravazzolo (2013), Maheu and Gordon (2008). The

parameters of interest are constant unless a break-point variable takes a unit value, in which case the

parameters are allowed to jump to a new level, as a result of a normally distributed shock (see Jostova

and Philipov, 2005). Furthermore, to consistently overcome the problems with generated regressors,

the model is estimated in a single step by using a Bayesian approach, following the seminal work by

McCulloch and Rossi’s (1991) and Geweke and Zhou (1996).3 In this paper, we provide an exact finite

1Our paper is not about how to produce better standard errors than under F-MB’s methods in asset pricing tests

involving data panels, to take into account cross- and own-serial correlation effects. Petersen (2009) reviews these methods

and performs thorough comparisons. Geweke and Zhou (1996) discuss the difference between the two endevours.
2 In practice, the classical two-step procedure either does not provide a known asymptotic distribution for functions of

interest in applied asset pricing work or these asymptotic distributions may not be reliable in finite samples, even when

they are available (see Petersen, 2009).
3However, McCulloch and Rossi’s approach remains a two-pass procedure in which the factors are extracted before
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sample statistical framework for testing multi-factor models. By construction, our approach represents

a single-step procedure that yields exact inferences; given the fact that there are unobservable factors in

the assumed return generating process, our framework implicitly incorporates this uncertainty into our

inferences. Moreover, our approach makes it possible to compute the posterior distribution of virtually

any function of the parameters that can be useful to implement economic tests (e.g., variance ratio and

decomposition tests applied to the predictable portions of asset returns).4

Our main results can be summarized as follows. First, using a variety of metrics–such as Bayesian

factors and average pricing error performance–we obtain evidence of the importance of capturing both

instability in betas and in stochastic volatility; additionally, simpler time-varying parameter models in

which betas follow random walk processes in which breaks are frequent but of modest size appear to be

outperformed by our change-point model. The Bayesian (posterior median) estimates of the risk premia

are stable over time and a few of them are precisely estimated. Moreover, a variance decomposition

test shows that the by considering model instability, together with parameter uncertainty, the amount

of cross-sectional excess return variation explained by the factor model increases with respect not only

to a standard F-MB, but also with respect to the case in which specific parsimonious restrictions on

the dynamics of both factor sensitivities and idiosyncratic risks are imposed. Second, the Bayesian

time-varying betas, stochastic volatility model leads to economically realistic estimates with reference to

an application for which the standard two-stage approach fails to provide plausible insights and would

lead to a MFAPM rejection, in a statistical sense. For instance, a two-step F-MB approach leads all

the 23 test portfolios to display large, systematic and persistent mis-pricing during our sample period.

On the contrary, in the Bayesian case, the values of the posterior medians of the same parameters as

well as their signs are sensible and often indicate the absence of large mis-pricings. Third, the F-MB

approach shows that idiosyncratic risk is large for most portfolios investigated and highly unstable; in

our Bayesian model, when all the uncertainty is taken into account, there is no longer strong evidence

of trends in idiosyncratic risk, even though plots for the individual portfolios show some evidence of a

peak in the early 2000s and some sign of growth trend towards the end of our sample, consistently with

earlier literature (see e.g., Campbell, Lettau, Malkiel and Xu, 2001).

The remainder of the paper is organized as follows. Section 2 outlines the theoretical MFAPM and

how we construct factor mimicking portfolios. Section 3 introduces the dynamic Bayesian model with

latent stochastic breaks and variances. This section also presents a few competing, restricted versions.

the Bayesian analysis starts and relies on a principal components estimation step. Geweke and Zhou propose a single-

step approach but their analysis rules out any instability in betas as well as idiosyncratic risk and does not focus on

pre-determined macroeconomic factors.
4A few recent papers have used similar time-varying beta multi-factor models with stochastic volatility in a range of

applications and provided appropriate Bayesian estimation algorithms. For instance, Aguilar and West (2000) introduce a

Bayesian dynamic latent factor model to investigate its portfolio implications; Lopes and Carvalho (2007) have generalized

this model to account for breaks in the stochastic volatility process; in a similar context, Carvalho, Lopes and Aguilar

(2011) show how latent factors may be combined with observable ones.
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Section 4 describes the data and reports the main empirical results. Section 5 performs additional

variance decomposition tests. Section 6 concludes.

2. The Pricing Framework

Our empirical work is based on model from the multi-factor linear class introduced by Ferson and Harvey

(1991). Multi-factor asset pricing models (MFAPMs) posit a linear relationship between asset returns

and a set of (macroeconomic, systematic) factors that are assumed to capture business cycle effects on

beliefs and/or preferences (as summarized by a SDF with time-varying properties, see e.g., Cochrane,

2005) and hence on risk premia.5 If we call the process for the risk factors  ( = 1 ) and  the

period excess return on asset or portfolio  = 1   , computed as  ≡ [(−−1 +)−1]−
where  denotes the price of any asset or portfolio,  any dividend or cash flow paid out by the

asset, and 

 the one-period interest rate, a typical MFAPM can be written as:

 = 0 +

X
=1

 +   ∼ (0 2) (1)

where [] = [] = 0 for all  = 1   and  = 1 . The time-varying process for

idiosyncratic risk, 2, is left unspecified by asset pricing theory and can be thought as one of the standard

frameworks popular in empirical finance, such as a simple GARCH(1,1) or a stochastic volatility model,

as it occurs in our paper. The advantage of MFAPMs such as (1) consists of the fact that a number of

systematic risk factors    may efficiently capture relatively large portions of the variability in the

cross-section of returns. Importantly, even though the notation  emphasizes that the factor loadings

are allowed to be time-varying, such patterns of time variation are in general left unspecified. Finally,

the 0 coefficients are often interpreted as abnormal returns on asset  “left on the table” after all risks

(,  = 1 ) and risk exposures (,  = 1 ) have been taken into account.

In the conditional version of Ross’ (1976) APT (in the absence of arbitrage) or in Merton’s (1973)

equilibrium intertemporal CAPM (ICAPM), the expected excess return on asset  over the interval [−1
] (i.e., the risk premium on asset ), −1[], may then be related by an arbitrage argument to its

“betas” (i.e., factor loadings measuring the exposure of asset  to each of the priced, systematic risk

factors) and the associated unit risk premia, the s:
6

5The macroeconomic factors with general effects on the SDF are typically represented by the market portfolio (i.e., ag-

gregate wealth) returns, the default spread on corporate bond yields, the term spread incorporated in the riskless (Treasury)

yield curve, and changes in the rate of growth of industrial production (see e.g., Chen, Roll and Ross, 1986).
6Technically, (2) does not derive from (1) by simply taking conditional expectations. It requires instead assumptions

concerning the law of one price, the exact vs. approximate nature of the factor structure, and in the latter case some

delicate limiting arguments. Cochrane (2005, ch. 9) provides an introduction to the derivation of MFAPMs starting from

a SDF. Under alternative conditions, (1) may also simply hold asymptotically, as  →∞.
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−1[] ≡ [|Z−1] ' 0(Z−1) +
X
=1

|−1(Z−1) = 0 +

X
=1

|−1 (2)

Here both the betas and the risk premia are conditional on the information publicly available at time

, here summarized by the  × 1 vector of “instruments” Z that capture any effects of the state of
the economy on unit risk premia (see e.g., Bossaerts and Green, 1989). The framework in (1)-(2) just

describes a general conditional pricing framework that is known to hold under a variety of alternative

assumptions. However, a variety of methodologies have been proposed to perform three related tasks

which affect the empirical performance of (1)-(2):

(i) how many factors ought to be selected, i.e., picking a value for ;

(ii) given , ranking competing sets of factors;

(iii) estimating the factor loadings {} (over time and for each possible pair  ) and the risk premia
 (over time and for each possible ).

These tasks are logically distinct from the formulation of the framework and–albeit their imple-

mentation affects our ability to learn about the fundamental mechanism pricing assets–they have an

exquisite statistical nature. In this paper we align ourselves to a number of papers in the empirical

finance literature (see e.g., McElroy and Burmeister, 1988; Chen, Roll and Ross, 1986) as far (i)-(ii)

are concerned–which means that we pre-select both  and which specific macroeconomic risk factors

ought to be considered in the light of the existing literature–and provide an alternative, arguably more

flexible econometric approach to accomplish task (iii).

2.1. The Standard Two-Stage Approach

The standard approach is the classical, two-stage procedure à la Fama and MacBeth (1973) also used

by Ferson and Harvey (1991) and popular in empirical finance: In the first step, for each of the assets,

the factor betas in (1) are estimated via a simple rolling window OLS. That is, for month , (1) is

estimated using the previous sixty months in order to obtain estimates for the betas, ̂
60

. This time-

series regression is updated each month. The choice of a 60-month rolling window scheme is typical of

the literature. To favor comparability between our Bayesian implementation with stochastic volatility

and the standard two-step approach, all the results in this paper are obtained under the assumption that

idiosyncratic variance, 2, follows a standard GARCH(1,1) process, 
2
 = 0+1

2
−1+2

2
−1.

7

7As a result, estimation of both the multi-factor model for the conditional mean and of the variance parameters is

performed using quasi-maximum likelihood. Ferson and Harvey (1991) have explored a range of alternative beta estimation

techniques, including conditional betas estimated from regressions on past information variables, sixty-month rolling betas

regressed on past information variables, and ARCH-style conditional betas, but their results are unaffected by selecting

simple, Fama-MacBeth style 5-year rolling OLS regression betas. Guidolin et al. (2013) document that the specifics of the

conditional variance model hardly affects the results from the classical, rolling window Fama-MacBeth implementation.
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In the second stage, the equilibrium restriction (2) is estimated for each of the periods in our sample a

cross-sectional regression using ex-post realized excess returns:

 = 0 +

X
=1

̂
60

 +   = 1    = 61   . (3)

Clearly, this  cross-sectional regressions simply implement (2) in a nonparametric fashion, in the sense

that any resulting time variation in the 0 and  coefficients fails to be explicitly and parametrically re-

lated to any of the instruments assumed by the researcher, even though additional projections/regressions

remain possible. In (3) 0 is the zero-beta (abnormal) excess return and the s are proxies for the

factor risk premiums on each month,  = 1 .8 Notice that 0 should equal zero ∀ if the model
is correctly specified, because in the absence of arbitrage all zero-beta assets should command a rate

of return that equals the short-term rate. Tests of multi-factor models evaluate the importance of the

economic risk variables by evaluating whether their risk premiums are priced or whether, on average,

the (second-stage, estimated) coefficients ̂ are significantly different from zero.

Although widely used, the two-stage Fama-MacBeth (henceforth F-MB) approach has a number of

statistical drawbacks. Petersen (2009) discusses these problems in detail and here we limit ourselves to

a brief summary, useful to create a contrast with our methodology presented in Section 3. First, the

second stage multivariate regression used to test for the equilibrium restriction (2) suffers from obvious

generated regressor (error-in-measurement) problems as the estimated first-stage, rolling window beta

estimates ̂
60

−1 are used as regressors on the right-hand side. For instance, Ang and Chen (2007)

have stressed that when the cross-sectional estimates of the betas ̂
60

−1 co-vary with the underlying

but unknown risk premia, (3) may easily yield biased and inconsistent estimates of the risk premia

themselves. Unfortunately, this co-variation is extremely likely: for instance, the asset pricing literature

generally presumes that during business cycle downturns both the quantity of risk (the size of the betas)

and the unit risk prices would increase, simply because recessions are characterized by higher systematic

uncertainty as well as by lower “risk appetite” (for instance, in a Campbell and Cochrane’s, 1999, habit-

formation model). Second, for instance as emphasized by Jostova and Philipov (2005) with reference

to a single-factor conditional CAPM, when parameters in linear models are estimated from the data,

their uncertainties should be taken into account. Third, the need to perform the estimation of (1)-(2)

in two distinct stages that use rolling windows to capture parameter instability is not only ad hoc but

also inefficient because the lack of more specific parametric forms makes testing for time-variation very

hard and dependent on hard-to-justify choices of the rolling window length, the updating rules applied

to select whether constant or decaying weights should be applied, etc. (see Maheu and McCurdy, 2009).

8This derives from the fact that if one considers a portfolio  such that ̂
60

 = 0 for all  6=  and ̂
60

 = 1, then 
is simply the conditional mean of  − 0.
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2.2. Traded vs. Non-Traded Factors

One problem with (1) is the difficulty of interpreting 0 (often called the “Jensen’s alpha”) when

some of the risk factors are not traded portfolios. In principle, 0 plays a key role: when  = 0

for  = 1  then (1) simplifies to  = 0 +  (with  ∼ (0 2)) and any [0] 6= 0 would
imply that in the absence of any priced risk factors, the excess return on asset/portfolio  is not zero,

which represents a violation of standard economic principles (under the assumption of correct model

specification and of a valid implementation/estimation strategy). In this sense, any [0] 6= 0 is

referred to as an “abnormal” (average) return. However, although analyses that use (1) to decompose

realized excess returns may still be implemented, unless all the factors are themselves tradable portfolios

it is impossible to interpret any non-zero 0 as an abnormal return (see Gungor and Luger, 2013). A

factor is tradeable if its realizations may be closely replicated (“mimicked”, with a high coefficient of

determination) by linear combinations (portfolios) of the test assets employed in the analysis. Unless

all factors are replicated and replaced by the returns on traded portfolios, there may be a considerable

difference between the theoretical alphas from an estimated model, and the actual alpha that an investor

may harvest from by trading assets on the basis of a MFAPM.

To eliminate such a possibility, we follow the literature (see e.g., Lamont, 2001) and proceed as

follows. When an economic risk factor is already measured in the form of a return (e.g., this is the case

of the U.S. market portfolio, real T-bill rates, the liquidity and bond risk factors, term structure spreads,

and default spread variables), we directly use the associated returns as a mimicking portfolio. Shanken

(1992) has argued that this approach delivers the most efficient estimates of the risk premiums. When a

factor is not itself an (excess) return (e.g., this is the case of macroeconomic variables such as industrial

production growth, unexpected inflation, and real consumption growth), we construct the corresponding

 0 ≤  mimicking portfolios by projecting the non-traded factors onto the space of excess returns of

base assets and a set of control (predictive) variables ( = 1 ...  0):

 =  + b
0
x + c

0
z−1 + ε ε IID (0 1) (4)

where x is a vector of excess returns on the base assets (in this case, all defined to be zero investment

portfolios) and z−1 denotes a vector of instruments that have the ability to predict returns. The resulting

returns on the th factor mimicking portfolio (FMP henceforth) are then defined as  = ̂ + b̂
0
x

and collect the fitted component of a factor that is unpredictable on the basis of past information and

that at the same time may be replicated by trading base assets using weights estimated by b̂ . Note

that the coefficients  and b do not need to add up to one because the base assets are zero-investment

portfolios (see Lamont, 2001). The base assets include six equity zero net investment portfolios with

different book-to-market and size characteristics as well as the returns on long-term government bonds
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minus the returns on the short term government bonds and the return on long-term corporate bonds

minus the return on long-term government bonds. We choose these assets for their well known ability

to span large “portions” of the return space. The set of instruments includes the lagged yield spread of

long-term Treasury bonds minus the T-bill yield, the lagged yield spread of long-term corporate bonds

minus the yield on long-term government bonds, and the lagged real short-term bill rate.

3. A Bayesian State-Space Approach

Our discussion of the standard F-MB two-step procedure implies that we need to: (1) avoid using

estimates of the first-stage betas as if these were observed variables; (2) fully account for parameter

uncertainty; and (3) make an effort to produce a sensible model of parametric instability–here in the

form of structural breaks–to reflect the commonly perceived (and tested) fact that both the relationship

between excess returns and factors, namely risk exposures (), the risk premia ( , for  = 1  and

 = 1 ), and possibly also residual idiosyncratic variances (2) stochastically change over time, as

in Ferson and Harvey (1991). We therefore develop a new Bayesian estimation approach in which:

• The measurement error due to the stochastic nature of the betas is avoided following McCulloch and
Rossi (1991) and Geweke and Zhou (1996), by characterizing the joint posterior of risk exposures

and premia such that both states and parameters are jointly estimated in a single step.

• Parameter uncertainty is fully addressed by using Bayesian techniques that integrate the joint
posterior to find the joint predictive density of the variables of interest.

• Model instability is captured by introducing stochastic breaks in the dynamics of the factor loadings
as well as of idiosyncratic volatility.

Specifically, we characterize the relationship between excess returns and factors and the time-varying

dynamics in factor loadings and idiosyncratic volatility in a state-space form where the observation

equation is the standard linear factor model (1)

 = 0 +

X
=1

 +  (5)

where ² ≡ [1 2  ]
0 ∼ (0 I) and [] = [] = 0 for all  = 1   and  = 1 .

The time varying parameters  and  are described by the state equations

 = −1 +   = 0  (6)

ln(2) = ln(
2
−1) +   = 1   (7)
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where η ≡ [0 1   ]
0 ∼ (0Q) withQ = (20 

2
1  

2
  

2
). Stochastic variations

(breaks) in the level of both the beta coefficients and of the idiosyncratic variance 2 are introduced

and modelled through a mixture innovation approach as in Chan and Maheu (2002), Ravazzolo, Paap,

van Dijk and Franses (2007) and Giordani and Kohn (2008). The latent binary random variables 1

and 2 are used to capture the presence of random shifts in betas and/or idiosyncratic variance (see

Mitchell and Beauchamp, 1988; George and McCulloch, 1993; Miazhynskaia, Frühwirth-Schnatter, and

Dorffner, 2006). The random variable 1 takes then a value equal to one if a structural break for the

th factor in the equation for the th asset at time  takes place. We assume that the structural breaks

are independent of each another (i.e., across assets as well as factors) and over time, with:9

Pr [ = 1] =  Pr [ = 1] =   = 1    = 0  (8)

This specification is very flexible as it allows for both constant and time-varying parameters. When

 =  = 0 for some  =  , then (6) reduces to (1) when the factor loadings and the quantity of

idiosyncratic risk are assumed to be constant, as  = −1 and ln2 = ln
2
−1. However, when

1 = 1 and/or 2 = 1, a break hits either a beta or idiosyncratic variance or both, and instability

is then captured by the random walk dynamics  = −1 + and ln(2 ) = ln(2−1) + 

(or 2 = 2−1 exp( )). The flexibility of the specification in (6) stems from the fact that risk

exposures, , and idiosyncratic risks, 
2
, are allowed to change on every time period, but they are

not imposed to be changing at every point in time. In our view, this helps to side-step the difficult (if

not impossible) task of persuading a Reader that the assumed dynamics represents the “right” kind:

given our uninformative priors, if the data need frequent breaks in betas of a small size, the posterior of

the corresponding parameters will provide indications in this direction; similarly, if the data need a (set

of independent) stochastic volatility process(es) with frequent shifts in idiosyncratic variance, posterior

estimates will give appropriate indications, etc.

Note that because when a break affects the betas and/or the variances, the random shift is measured

by variables collected in η, we can interpretQ as the “size” of the break: a large 
2
 means for instance

that whenever  is hit by a break, i.e.  = 1, such a shift is more likely to be large (in absolute

value). This process for factor loadings and idiosyncratic residual risk is different from frameworks typical

of the time-varying parameter literature in which factor loadings are assumed to vary continuously (i.e.,

in every period) and usually according to simplistic AR(1) structures with high persistence and small

variance for the shocks, such as  = 1−1 + and ln(2) = 2 ln(
2
−1) + with 1 and

9The independence across breaks is consistent with the spirit of a factor model and may not be necessarily restrictive.

Indeed, the comovements among asset returns should be driven by the factor structure regardless of the nature of the

structural breaks. However our approach is flexible because “it lets the data speak” about whether breaks across assets 

and  are contemporaneous or not.
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2 close to but less than one.
10

Following a logic similar to (3) but applied to our B-TVB-SV framework, the cross-sectional restric-

tions in (2) are characterized through the multivariate linear model

 = 0 +

X
=1

|−1 +   = 1  (9)

where  ∼ (0 2) and |−1 measures the expected time  sensitivity of asset  to factor , based on

all information available up to time − 1. Because we adopt a single-step Bayesian estimation strategy,
and the unknown betas and risk premia are multiply each other, in practice (9) imposes a set of non-

linear restrictions in estimation. Note that under the assumption of correct specification of the asset

pricing model, 0 = 0 or, at least, the average over time of the 0s ought to be zero, implying that

only the assumed risk factors are explaining the risk premia on the different assets and portfolios. In our

setting |−1 represents a draw from the predictive distribution of the state dynamics in (6), which

is obtained by integrating out both the probability of recording a structural break and the uncertainty

about the size of the break itself. Ferson and Harvey (1991) have emphasized the importance that in the

implementation of factor models the time  excess return on asset  should be determined by investors

with reference only to information available up to time  − 1.11 The Bayesian paradigm allows us to

go one step further to properly capture the forward looking nature of the asset pricing model. As in

Geweke and Zhou (1996), the risk premia λ ≡ (0 1  )
0 are estimated jointly with the factor

loadings B ≡
©


ª 

=1 =0
, the (log of the) idiosyncratic variances σ2 ≡

¡
21 

2
2  

2


¢0
, as well as

the other parameters Θ = {θ}=1, with θ ≡ (q2 π)
0, where q2 ≡

¡
20 

2
1  

2
  

2


¢0
is the vector

of conditional variances of the factor loadings and the idiosyncratic risks and π ≡ (0    )0 is
the vector of structural break probabilities for the th asset. The time variation in the risk premia is

inherited by the dynamics in portfolio sensitivities, {B}=1. Therefore, even though the dynamics of
λ is not explicitly specified in our model, the instability of the betas is by construction reflected in the

risk premia as well. Appendix A provides additional details on the estimation algorithm.

3.1. Special Cases

The model presented in (5)-(8) is the most general specification we consider in this paper. We will call this

model B-TVB-SV specification indicating that we consider a Bayesian (B), Time-Varying Betas (TVB)

and Stochastic Volatility (SV) framework. Here the words time-varying and stochastic for the betas and

10The likelihood tends to be not well-behaved when 1 and 2 are close to one and their estimation might be difficult,

see the discussion and examples in De Pooter, Ravazzolo, Segers and van Dijk (2008).
11The parameters Q and probabilities Pr(1 = 1) and Pr(2 = 1) are however estimated over the full sample

period. It is possible to recursively repeat the estimation over several vintages of data and produce out-of-sample forecasts

of |−1, but the computational cost in our application with 40 years data and 23 portfolios would be very high.
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the volatilities are synonymous of structural breaks in both the risk exposures and the idiosyncratic risks.

Of course, this B-TVP-SV model is richly parameterized and it cannot be ruled out that issues related

to over-parameterization may arise. Moreover, many of our fine economic conclusions might be driven

by details of the parameterization of the change point process in (5)-(8). Therefore, for comparative

purposes, we consider a number of alternative restrictions on the dynamics of the state equation:

1.  = 0 ∀ , i.e. a constant idiosyncratic volatility model:

 = 0 +

X
=1

 +   = 1  

 = −1 +   = 0  (10)

under the same distributional assumption as (5)-(9). We will call this model a Bayesian ho-

moskedastic time-varying betas model, i.e. B-TVB.12

2.  = 1 ∀   and  = 1 ∀ , i.e., time-varying parameters (TVP) according to random walk

specifications (see e.g., Koop and Potter, 2007; West and Harrison, 1997). In practice, we also

implement a Bayesian TVP model (B-TVP) also considered by Jostova and Philipov (2005):

 = 0 +

X
=1

 + 

 = −1 +   = 0 

ln(2) = ln(
2
−1) +   = 1  (11)

B-TVP assumes a unit probability of breaks (even though this are of a small size) in the dynamics

of the states  and 2 at each point in time. This is indeed a fairly strict assumption which is

not necessarily supported by the data. Even though we name the model B-TVP, it features SV.

Of course, the constant volatility B-TVB specification is used to highlight the effects of instabilities

in residual variances. The B-TVP specification is used as a competing specification in order to show

the benefit of considering the more parsimonious, occasional large breaks in (6)-(8) as opposed to small,

frequent (continuous) breaks (see Giordani and Villani, 2010, for a related discussion).

3.2. Prior Specification

We estimate (6) using a Bayesian approach that allows us to incorporate parameter uncertainty when es-

timating both the beta exposures and the equilibrium risk premia. For the Bayesian algorithm illustrated

12Trivially, the symmetric case of  =  = 0 ∀ implies that  = −1 =  and ln(
2
) = ln(

2
−1) = ln(

2
 )

and consists of the two-step Fama-MacBeth model with constant betas and idiosyncratic variances.
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in Appendix A to work, we need to specify the prior distributions for each of the model parameters. The

parameters of the model (5)-(9) are Θ ≡ {θ}=1 with θ ≡ (q2 π), plus the risk premia λ which are

estimated at each time  conditional on the factor exposures sensitivities according to (9). We choose a

conjugate prior structure to keep the numerical analysis as simple as possible. As far as the structural

break probabilities are concerned, we assume a set of simple Beta distributions:

 ∼ (  )  ∼ (  ) for  = 1  ,  = 1 . (12)

The parameters    and    represent the shape hyperparameters and can be set according to our

prior beliefs about the occurrence of structural breaks in  and ln(
2
), respectively.

13

For the conditional variance parameters q2 , which reflect our prior beliefs about the size of the

structural breaks we assume an inverted Gamma prior,

2 ∼ (  ) 2 ∼ (  ) for  = 1  ,  = 1  (13)

where   0   0 and   2   2 are the scale and degrees of freedom parameters, respectively,

for the factor loadings and the (log-) variances.14 Finally, the prior distribution for the risk premia λ is

a characterized as a standard multivariate normal distribution with independent priors:

λ ∼ (  ) 2 ∼ (0Ψ0) for  = 1  (14)

The parameters  and  represent the  × 1 location vector and the  × scale matrix for the -

dimensional multivariate normal distribution; 0 and Ψ0 are the scale and degrees of freedom of the

conditional variance 2 parameters, respectively, in (9). Because these priors are independent of one

another, the density of the joint prior distribution (Θ) is given by the product of the prior specifications

(12)-(14). The choice of the values for the hyperparameters of the priors is discussed in Appendix A.

3.3. Posterior Simulation

Posterior results are obtained through the Gibbs sampler algorithm developed in Geman and Geman

(1984) in combination with the data augmentation technique by Tanner and Wong (1987) and Frühwirth-

Schnatter (1994). The latent variables , 
2
 and ,  for each of the  = 1   assets,

each of the  = 1  factors and at each time  = 1   , are simulated alongside the model pa-

rameters θ and the equilibrium risk premia λ. However, to apply the Gibbs sampler we need to

13Under a Beta distribution, the unconditional expected prior probability of a structural break for the th asset beta

relative to the th factor is defined as (+) while in the case of idiosyncratic variance, this is equal to (+).
14Under an Inverted Gamma prior, the expected size of a break for, say, the exposure of th asset to the th factor is

( − 2) for   2.
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write down the complete likelihood function, namely, the joint density of the data and the state vari-

ables. Defining θ ≡ {θ}=1, B≡ {β}=1, B ≡ {B}=1, R ≡ {} 
=1 =1  F ≡{F }=1 λ ≡ {λ}=1,

K≡ {}  
=1 =1 =1, K≡ {} 

=1 =1, Σ =
©
σ2
ª 

=1 =1
, the likelihood function is

(RBKΣλ|θF) =
Y
=1

(
Y
=1

(|Fβ 
2
)(

2
|2−1  2) (1− )

1−× (15)

×
⎡⎣ Y
=0

(|−1  2)× 

 (1− )

1−

⎤⎦  ¡λ 2|BR

¢⎫⎬⎭ 

where K≡(KK) and F  = (1 2  )
0. Combining the prior specifications (12)-(14) with the

complete likelihood, we obtain the posterior density (θBKΣλ|RF) ∝ (θ)(RBKΣλ|θF).
Our Gibbs sampler is a combination of the Forward Filtering Backward Sampling of Carter and Kohn

(1994) and Kim, Shepard, and Chib (1998), and the efficient sampling algorithm for the random breaks

proposed in Gerlach, Carter, and Kohn (2000). At each iteration of the sampler we sequentially cycle

through the following steps:

1. Draw K conditional on ΣKθ, R and F.

2. Draw B conditional on ΣKθ, R and F.

3. Draw K conditional on BKθ, R and F.

4. Draw R conditional on BKθ R and F.

5. Draw λ conditional on BKθ R and Σ.

6. Draw θ conditional on BK, R and F.

We use a burn-in period of 1,000 and draw 5,000 observations storing every other of them to simulate

the posterior distribution of parameters and latent variables. The resulting autocorrelations of the draws

are very low.15 Appendix A provides additional details.

4. An Empirical Application to the U.S. Cross-Section of Financial Returns

4.1. Data and Descriptive Statistics

We consider a typical application in the empirical finance literature based on a large number (23) of

monthly time series sampled over the period 1972:01 - 2011:12. The starting date is due to the availability

of the complete set of instruments and corporate bond return data. The initial ten years are used to

empirically elicit the priors. Our empirical analysis is implemented over the remaining 360 observations,

15 In order to gain a rough idea of how well the chain mixes in our algorithm we follow Primiceri (2005) and check the

autocorrelation function of the draws.
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per each of the series. The series belong to two main categories. The first group, “Portfolio Returns”,

includes stocks, U.S. Treasuries and notes, and corporate bonds, all organized in portfolios to tame

the non-diversifiable risk reflected by excess returns. The stocks are publicly traded firms listed on

the NYSE, AMEX and Nasdaq (from CRSP) and sorted according to two criteria. First, 10 industry

portfolios are obtained by sorting firms according to their four-digit SIC code. Second, 10 additional

portfolios are derived by sorting (at the end of every year, and recursively updating this sorting every

year) NYSE, AMEX and Nasdaq stocks according to their size, as measured by the aggregate market

value of the company’s equity. Using industry and size-sorting criteria to form portfolios of stocks to

trade-off “spread” and reduction of idiosyncratic risk, is typical in the literature (see e.g., Dittmar,

2002). Moreover, industry- and size-sorting criteria are sufficiently unrelated to make it plausible that

industry- and size-sorted equity portfolios may contain non-overlapping information on the underlying

factors and risk premia. Data on long- (10-year) and medium-term (5-year) government bond returns are

from Ibbotson and available from CRSP. Data on 1-month T-bill, 10-year and 5-year government bond

yields and returns are from FREDII at the Federal Reserve Bank of St. Louis and from CRSP. Data on

“junk” bond returns are approximated from Moody’s (10-to-20 year maturity) Baa average corporate

bond yields and converted into return data using Shiller’s (1979) approximation formula.

The second group collects macroeconomic risk variables. These factors are used as proxies for the

systematic, economy-wide forces potentially priced in asset returns. We employ nine factors: the excess

return on a wide, value-weighted market portfolio ( ) that includes all stocks traded on the NYSE,

AMEX, and Nasdaq (from CRSP); changes in the default risk premium () measured as the difference

between Baa Moody’s yields and yields on 10-year government bonds; the change in the term premium

(∆), the difference between 10-year and 1-month Treasury yields; the unexpected inflation rate

(), computed as the residual of a simple ARMA(1,1) model applied to (seasonally adjusted) CPI

inflation rate; the rate of growth of (seasonally adjusted) industrial production (); the rate of growth

of (seasonally adjusted) real personal consumption (); the 1-month real T-bill return computed as

the difference between the 1-month T-bill nominal return and realized CPI inflation rate (not seasonally

adjusted); the traded Liquidity factor () from Pastor and Stambaugh (2003); the Bond premium

factor () from Cochrane and Piazzesi (2005).16 Using a relatively large number of pre-selected

factors is typical of the literature.17 Table 1 reports a detailed set of summary statistics.

16The traded liquidity factor consists of value-weighted returns on a high-minus-low exposure portfolio on an aggregate

liquidity risk factor that sorts stocks on the basis of liquidity risk measures. Næs, Skjeltrop, and Ødegaard (2011) show the

existence of strong linkages between stock market liquidity and business cycle-related macroeconomic aggregates. The bond

risk premium factor is constructed as the projection of the equally weighted average of one-year excess holding period return

on bonds with maturities of two, three, four, and five years on a constant, the one-year yield, and the two- through five-year

forward rates. The bond risk factor is the fitted value of this regression. Cochrane and Piazzesi (2005) and Ludivgson and

Ng (2009) investigate the relationship beween this factor and macroeconomic aggregates, following the intuition of Harvey

(1989) on the links between the term structure and consumption growth.
17For instance Mei (1993) uses five factors; Connor and Korajczyk (1988) find there are more than five factors (although

factors in excess of five generally do not play an important role, although they are statistically significant); Ludvigson and
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4.2. Time-Varying Betas

As an initial way to assess the plausibility of our results, Figure 1 reports the average (of posterior

medians over time) probabilities over our sample of observing a break in the factor loadings, in addition

to the intercept, across two different specifications, namely the B-TVB-SV and the homoskedastic B-

TVB, for the 23 test assets/portfolios. Clearly the presence of breaks in the idiosyncratic variance

process makes a difference in capturing any instability in portfolio betas. Under the B-TVP-SV model

the average probability of observing a break is around 40% for the intercept (labeled as factor 1 in the

figure) of all portfolios examined, and ranges from 20% for the credit and term spreads (factors 2 and

8) to almost 40% for the bond factor (factor 9). This shows that infrequent and large breaks in betas

(as well as Jensen’s alphas) are often isolated by the Gibbs sampling algorithm. Under the B-TVB

specification, instead, the degree of instability in the factor loadings dramatically collapses. The average

probability of a break in betas is around 5% across all risk for the industry portfolios (portfolios 1-10

in the figure), while for both the size-sorted equity portfolios and bonds, the average break probability

over the sample increases to between 20 and 30% across factors.

Figures 2-7 plot a selection of time series medians and 95% Bayesian credibility intervals computed

from the posterior densities of the loadings , obtained from the B-TVB-SV model. To save space, we

report plots of time series of risk exposures for all the 23 portfolios used in our estimation, but only for

five out of nine specific factors: the U.S. market portfolio, the term spread, industrial production growth,

the real T-bill, and unexpected inflation. Other, similar plots concerning the remaining risk factors–the

credit spread, the real consumption growth, the bond and the liquidity factors –are available upon

request even though we summarize their contents and implications below. An overview of the plots

immediately reveals that the Bayesian estimates of the loadings for all but the market portfolio and the

bond risk factor, imply a time path of the factor loadings that is rather smooth over time. This is a first

interesting result: even though (6) formally allows factor exposures to be subject to “jumps” over time,

as a result of the realization of , the resulting posterior densities are actually smoother than what one

could retrieve using, say, a naïve rolling window scheme. For instance, this is evident from a comparison

of Figures 2 and 3, where in the latter we plot estimated, 5-year rolling window F-MB betas for the

23 test portfolios vs. the market portfolio.18 Interestingly, this smoothness mimics exactly what many

earlier papers have imposed by assuming near unit root processes ( = −1 + ) with small

variance of the shocks, but is derived endogenously and is data-driven, which means that occasional large

jumps in exposures and/or high volatility of the process may be accommodated. Second, with a limited

number of exceptions that will noted below, the 95% confidence bands are relatively tight, which means

that the betas are estimated with a fairly high level of reliability.

Ng (2009) find evidence in favor of eight latent factors.
18To save space, we do not report all plots of the time-varying, 5-year rolling window betas obtained using a classical

two-step estimation scheme, as we describe in Appendix A. These plots are available upon request.
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In particular, Figure 2, concerning exposures to market risk, collects most of the loadings for which

we have evidence that betas are non-zero. All equity portfolios are characterized by positive and reliably

estimated betas. This is not the case for the bond portfolios which essentially show zero exposure to the

market risk factor. As already mentioned, Figure 3 offers an opportunity to compare the B-TVB-SV

estimates with market beta exposures under a the classical F-MB approach described in Appendix A. In

Figure 4, concerning the betas vs. term premium shocks, most equity portfolios are significantly exposed

to yield curve slope risk, in the sense that their 95% bands do not systematically include zero. In the

figure, the betas fluctuate considerably over the sample period and often change sign. Such betas tend to

drift down and to be (significantly) negative for low-decile size-sorted portfolios (i.e., small and medium

stocks), for high-tech stocks (especially after 1994), and for junk corporate bonds (at least in the 1980s

and 1990s); they are instead positive and often significant in the case of energy and health stocks.

The plots of time-varying exposures to real output (industrial production growth) risk in Figure 5

show occasionally larg(er) 95% credibility regions that tend to widen over the sample. However, also

in this case, for a large sub-set of portfolios, the corresponding betas are estimated to be negative and

significant (nondurables, durables, manufacturing, high-tech, shops, health, and small- and medium-size

equity portfolios), while for other portfolios the exposure is positive and significant (energy and utility

stocks). Of course, negative exposures to output risk are partially surprising, but because in our model,

factors have not been orthogonalized one vs. the others–that will require selecting and imposing a

triangular structure that would prove to be “ad hoc”–betas only capture partial effects, after other

exposures to business cycle risks are taken into account (see Kramer, 1994). An unreported figure

concerning betas vs. the short term real rate shows instead exposures that are small and for which the

95% credibility bands tend to include zero for most of the sample. However, close attention reveals that

a number of smooth patterns of fluctuations imply sub-periods in which exposures to real rate risk have

also been precisely estimated, for instance a negative exposure in the case of durables, high tech, retail

shop, first capitalization decile stocks, and medium-term Treasury notes, in the early and mid-1990s.

Figure 6 shows estimated time-varying exposures to unexpected inflation risks. In the asset pricing

literature, the issue of the exposure of asset returns to inflation risks has often been debated. The plots

show that even though confidence bands tend to be wider for this factor than for other factors that we

have described before, for many portfolios there tends to be still significant evidence of a significantly

positive exposure, i.e., of the fact that these assets pay out risk premia to compensate for inflation risks.

Even if we limit ourselves to global results that hold throughout our entire sample, this hedging property

obtains in the case of durables, high-tech, retail, and of small and medium-capitalization stocks. On

the contrary, energy, telecommunication, utilities, and especially all kinds of bonds (including corporate

junk), imply negative, significantly estimated exposures throughout the sample.

We have also inspected the remaining four sets of plots concerning the other risk factors (default
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spread, real consumption growth, liquidity, and bond factors). In the case of default spread and real

consumption growth risks, all betas imply low variability and narrow 95% credibility regions, but these

also fluctuate steadily around zero for the all 23 portfolio investigated. The finding is similar in the

case of betas vs. the liquidity factor, although these show a stronger temporal variation, which means

that sub-samples can be isolated in which this factor commands precisely estimated exposures. When

this occurs, betas are mostly positive (for instance, durable stocks in the late 1990s and high-tech stocks

in the early 1990s). Finally, although unstable, the results concerning the exposures to Cochrane and

Piazzesi’s factor are interesting. As one would expect, all bond portfolios show periods in which they

have large and significant loadings on this factor, especially during the 1990s and 2001-2004. Equities

show more dispersed posteriors which become large in the 1990s.

Figure 7 reports posterior medians and 95% credibility intervals for the 0s estimated from the B-

TVB-SV model. In an ICAPM interpretation of (1), made possible by the fact that all factors are traded,

the time series (of posterior medians for) {0} gives indications on mis-pricing. Out of 23 portfolios,
in no case the estimated mis-pricing indicators are systematically elevated (in absolute) value. In fact,

apart from occasional fluctuations, separate calculations show that the 95% credibility regions include

a zero mis-pricing in more than three-quarters of our sample. This is an indication that in its B-TVB-

SV implementation, the model (5)- (6) is well-specified in an economic sense, as it does not imply any

evidence of a systematic mis-pricing. Of course, in the case of many portfolios, occasional periods in

which the posterior of 0 fails to include a zero mis-pricing can be found. For instance, there is evidence

that all bond portfolios implied positive and tight posteriors for the Jensen’s alphas between 2000 and

2004; high-tech and telecommunication stocks were all giving large and significant alphas during the

early- to mid-1990s. Interestingly, Figure 8 shows that this is not the case when we plot and examine

estimates of the 0 coefficients from a 5-year F-MB implementation. The corresponding Jensen’s

alphas are strongly fluctuating often reaching extreme levels of ±4% per month, i.e., values that are

hardly plausible in an asset pricing perspective, and they often appear to be statistically significant in

the sense that their 95% confidence bands fail to include a zero mis-pricing. This is of course hardly

credible and points more to a failure of the two-pass, rolling window approach than to a misspecification

issue with the model in (1).

4.3. Dynamics in Idiosyncratic Risk

A growing literature (see e.g., Campbell, Lettau, Malkiel and Xu, 2001) has stressed that the idiosyn-

cratic variance of the excess returns on most test portfolios, 2, has undergone important shifts and/or

dynamics over the last two decades. We have inspected the filtered GARCH values of residual variance

obtained from the classical, two-pass F-MB method (unreported to save space). The presence of rich

dynamics is obvious for all the portfolios. In some cases such dynamics turned out to be hard to inter-
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pret. First, idiosyncratic variation tends to be large for most test assets, a sign that the two-pass method

provides does not fully explain the 23 time series of excess returns. The ratio between the average of

the two-pass GARCH estimates ̂2 and the sample variance of portfolio returns over our sample reveals

that for a large fraction (13) of the 23 portfolios investigated, this is close to or in excess of 0.5, with all

the bond portfolios with ratios in excess of one (because of the rolling window nature of the {̂}, this
ratio may actually exceed one). This means that the non-systematic component of excess returns still

explains at least 50% of the total variance. Second, most equity portfolios (in practice, all the industry

portfolios and size deciles 1-8) record a peak in idiosyncratic variance between 2000 and 2003. In some

cases, the rolling window idiosyncratic variance practically doubles between 1999 and 2004, meaning

that the MFAPM loses most of its ability to fit excess returns using risk exposures.

Figure 9 plots posterior medians for 2 estimated from (5)- (6), along with 95% Bayesian intervals.

There are evident spikes in idiosyncratic volatility in the early 2000s and weaker signs of a growing trend

towards the end of our sample. The financial crisis of 2008-2009 induces a residual risk increase, but this

appears to be minor compared to 1999-2001, when the model had temporarily lost its ability to fit the

U.S. cross-section. In this respect, the fact that the model is more at trouble with the tech stock bust

than with the U.S. subprime and credit crunch crises is intriguing. However, the fact that idiosyncratic

is countercyclical was largely expected in the light of the literature (see Campbell et al., 2001). The

B-TVB-SV model explains away almost all the variability in excess returns in the case of medium and

large cap stocks, and to some extent also government bonds. Spikes in idiosyncratic risk are instead

more pronounced for small caps and for a number of industry portfolios, that are explained much less

accurately than size-sorted portfolios are. Yet, no clear trend is observed, which is consistent with the

more recent evidence reported by Bekaert, Hodrick, and Zhang (2012).

4.4. Time-Varying Risk Premia

Table 2 reports summary statistics for posterior estimates of the risk premia {̂} ( = 1 ) from the
B-TVP-SV model as well as the B-TVP and the homoskedastic B-TVB frameworks. As a benchmark,

the table also shows (frequentist) estimates from the second-pass F-MB approach. In the table, we also

report the empirical standard error for the sample mean of each of the s. From the very first panel of

the table, it is clear that the classical estimation procedure that non-parametrically tracks time-variation

in the parameters using 5-year rolling windows delivers economically weak implications: only two factors

were accurately priced in the cross-section (the market and bond factors), but the former with a p-value

exceeding the standard 0.05 threshold and the latter with a rather difficult, negative sign; moreover, the

time series mean of ̂0 turns out to be large, positive (0.29% per month), and statistically significant

(its p-value is 0.034), which is problematic to our MFAPM because a non-zero average 0 implies that

omitted risk factors with non-zero risk premia must be absorbed by the residual mean.
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Therefore the background to our dynamic, state-space results is that a simple, ad-hoc rolling window

implementation of the MFAPM in (5)- (6) would yield an embarrassing rejection of the model, in spite of

the fact that we are employing as many as nine factors, some of them coming with a strong endorsement of

cross-sectional explanatory power from the asset pricing literature. Fortunately, a much more comforting

picture emerges from the B-TVB-SV model, when a parametric model for unstable risk exposures and

idiosyncratic risk is assumed. Here the Bayesian design gives evidence of precisely estimated market,

liquidity, and macroeconomic (as capture by IP growth shocks) risk premia, with the correct, positive

signs (0.339, 0.317, and 0.002 percent per month/unit of risk, respectively). Also the unexpected inflation

risk premium is precisely estimated but with a negative sign, similarly to Chen, Roll, and Ross (1986),

Ferson and Harvey (1991), and Lamont (2001). Importantly, the average of the posteriors for 0 reveals

that the intercept is not significantly different from zero.

All in all, these results illustrate the fact that while in a naive F-MB implementation all one gets is

evidence that a standard multi-factor model–both in terms of its structure and for what concerns the

factor it includes–is rejected with reference to a wide but typical set of U.S. financial asset portfolios,

such finding is replaced by reassuring evidence that not only the market portfolio (as typical of text-

book CAPM) but also a number of macroeconomic factors carry precisely estimated and economically

meaningful risk prices. Such empirical findings are less comforting when we impose restrictions on the

B-TVP-SV model. In both cases, the average of the posteriors for 0 has a mean that is significantly

positive, with p-values below 0.05. While in the B-TVP case at least 3 of the 4 factors that commanded

positive and significant risk premia in B-TVP-SV set up, in the homoskedastic B-TVB model only mar-

ket risks appear to be barely priced in the U.S. cross-section of stocks and bonds. This is indicative of

the restrictions imposed by the B-TVP and the homoskedastic B-TVB models being rejected, an aspect

that shall be investigated in more detail in Section 4.5.

4.5. Discriminating Among Models: Marginal Likelihood Evidence

Following McCulloch and Rossi (1991), we use the marginal likelihood of different models to perform a

comparison able to take into account their overall (in-sample) statistical performance, and not only their

asset pricing plausibility as in Sections 4.2-4.4. The marginal likelihood of a model is known to take into

account both the uncertainty about the size and the presence of structural breaks and the uncertainty

concerning the parameters in (5)- (8). The marginal likelihood of each model is computed as

(R|F;M) =

Z
...

Z X
K

(R|BKΣλ,θF;M)× (θBKΣλ|RF;M)BΣθΣ, (16)

whereM identifies the th model and the posterior density (RBKΣλ|θF;M) is given by (15).

Following Chib (1995), we compute the marginal likelihood by replacing the unobservable breaks and
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parameters in the likelihood of the data generating process defined by (5)- (8) for each draw.

Table 3 reports the marginal (log)likelihoods for each of the model specifications as well as the Bayes

factors, the difference between model-specific (log)likelihoods, used as an model selection indicator that

naturally penalizes for the different size/complexity of different models (see Kass and Raftery, 1995), for

each of the alternative frameworks including the two-step F-MB approach, vs. B-TVB-SV. Because Bayes

factors are constructed from marginal likelihoods, they measure a model ability to explain the entire

distribution (not just first moments) of test asset returns. Bayes factors also permit the simultaneous

comparison of multiple models, regardless of whether the models are nested. To favor interpretations,

also the (log)likelihood contributions by each of the 23 test portfolios under each of the models and

the corresponding Bayes factors have been computed. Interestingly, the B-TVB-SV model shows the

higher marginal (log) likelihood values across all of the portfolios under consideration, as well as the

higher overall marginal likelihood. By exceeding 100, all the overall Bayes factors are highly significant.

In particular, the factors vs. the B-TVP and the two-step F-MB implementations are 892 and 5602,

respectively, and therefore appear to be decisively in favor of the complete B-TVB-SV framework. The

Bayes factor vs. the B-TVB model with stochastic volatility is instead 191 and remains favorable to

B-TVB-SV. Surprisingly, the B-TVP model ranks second both in overall terms and for all the test

portfolios, thus outperforming the homoskedastic B-TVB alternative. This result emphasizes that by

fully acknowledging instability in idiosyncratic risk plays a key role beyond that of capturing breaks in

the betas. As one would expect, given its ingenious but ad-hoc nature, the classical two-step F-MB

approach ranks last with an overall marginal likelihood around 15 times lower than under the B-TVB-

SV model. The dominance of the B-TVB-SV framework occurs across all portfolios, but appears to be

particularly elevated in the case of bonds and medium and large caps portfolios of stocks.

4.6. Robustness Checks

We have experimented with an informative prior in the second pass in order to put some structure

(constraints) on the distribution and moments of the risk premia. These are now postulated to be

normally distributed with zero mean and variance such that there is 95% probability that annualized

premia are smaller in absolute value than the largest between the absolute value between the minimum

and the maximum excess return observed in our sample.19 We record a considerable reduction in the

variability of the estimated posterior distributions of the risk premia relative to the baseline case. The

qualitative results and insights from Table 2 in the B-TVB-SV case apply intact and, in general, using

informative priors on the premia limits their variability so we find both more precisely estimated premia

(so far the result has been built in the type of prior used) and economic implications that encompass

Tables 2 and 3: industrial production growth, liquidity, unexpected inflation, and especially market risks

19A complete description of prior distributions and hyperparameters used can be found in Appendix A.
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are important drivers of the cross section of U.S. stock and bond returns. To save space, we have not

plotted or tabulated complete set of results, that remain available from the Authors.

5. Economic Assessment

So far our discussion has focussed on statistical performance in terms of whether there was evidence

of either the 0s or the 0s coefficients being different from zero and especially with emphasis on

the comparison of marginal log-likelihood values. We have concluded that (1)-(2) is rejected in its

two-pass F-MB implementation based on 5-year rolling window estimates. However, there was some

supportive indications that the B-TVB-SV model may be not completely at odds with the data. The

results concerning B-TVP have shown that while there are some degrees of freedom as to the way one

ought to best model time-variation in risk exposures, capturing instability in stochastic volatility is truly

fundamental. Yet, we still know little about the economic implications of B-TVB-SV. In this section, we

report additional evidence on the economic importance of the estimates uncovered for B-TVB-SV model.

In Section 5.1, we comment on the variance ratios,  1 and  2 described in Appendix B that measure

the degree of misspecification of a MFAPM. The idea of  1 and  2 is that a correctly specified

MFAPM should at least explain most or all of the predictable variation in the excess returns of the test

assets, and therefore leave an unexplained portion that should be as small as possible. Using results

detailed in Appendix B, Section 5.2 comments on a decomposition of the sources of predictable variation

of excess returns due to the MFAPM. Section 5.3 reports pricing tests that provide an alternative and

intuitive measure of the quality of the approximation provided by the MFAPM.

5.1. Variance Ratios

With reference to the estimates of (5)-(8), we have computed (posterior distributions of the) VR1 and

VR2 ratios defined in Appendix B and typical of the literature. Given their popularity, we just limit

ourselves to recall that VR1 should be equal to 1 if the multi-factor model is correctly specified, which

means that all the predictable variation in excess returns is captured by variation in macroeconomic risk;

at the same time, VR2 should be equal to zero if the multi-factor model is correctly specified. Moreover,

as explained in Appendix B,  1 = 1 does not imply that  2 = 0 and viceversa. In what follows, the

information at time − 1 (Z−1) used to tease out the total predictable variation in excess returns used
as a “denominator” in the empirical results that follow is proxied by the instrumental variables listed in

Table 1, plus a dummy variable to account for the so-called “January effect” (see Thaler, 1987).

Columns 4 and 7 of Table 4 present posterior medians of (normalized)  1 and  2 obtained from

the B-TVB-SV model for each of the 23 portfolios. These variance ratios are compared to the ones

obtained from competing models. A normalization is performed by dividing the posterior medians by

the variance of the underlying excess return series. Variance ratio results are encouraging. Under a VR1
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perspective, on average approximately 80% of the predictable variation in excess returns is captured by

the B-TVB-SV model. Such a statistic is only 51% in the case of the F-MB implementation (column 1)

and goes as low as 47 and 43% for the B-TVP and homoskedastic B-TVB models, respectively. Although

in the light of the earlier marginal log-likelihood evidence, this is relatively un-surprising, because the

mapping between the ability to capture any predictable variation and the log-likelihood is a complex one,

these results remain economically meaningful. However, the generally high VR1 ratios from the B-TVB-

SV model vary considerably across different test assets. The ratios are relatively high, also in relation to

what is typically reported in the literature (see Ferson and Harvey, 1991, or more recently Guidolin et al.,

2013), in the case of government bond portfolios (possibly because we have used Cochrane and Piazzesi’s

factor) and for a few industries, such as manufacturing, energy, and high-tech, for which VR1 exceeds

90%. It is instead below 50% in the case of the smallest capitalization decile and of non-investment

grade corporate bonds, exactly where one would expect our macroeconomic risk factors to have more

trouble at fitting the variation in excess returns.20

Because  1 +  2 = 1 does not hold, the finding of high VR1 ratios fails to imply that the VR2

ratios are close to zero. Yet, VR2 is on average just above 20% in the case B-TVB-SV, to be contrasted

with averages across test portfolios of 48-54% in the case of other models. Moreover, in the case of the

B-TVB-SV framework, we record VR2 ratios equal to or inferior to 15% in 9 out of 23 portfolios. All in

all, under both the VR1 and VR2, we find evidence of appreciable performance of the model.

5.2. Sources of Risk

We have also followed Appendix B and computed the contribution of each factor to the fit offered by the

B-TVB-SV model to fitting the predictable variation in excess stock returns. The highest contribution

is given by the market risk factor: with three exceptions (energy, health, and utility stocks), all the

ratios  [ (|−1| Z−1)]  [ (
P9

=1 |−1|Z−1)] concerning stocks exceed 0.5
with peaks in excess of 1 for a number of industries as well as medium-cap portfolios.21 However,

the market factor does not explain most of the predictable variation in excess bond returns, when it

is replaced in this leading role by the credit risk factor. As far as stocks are concerned, the next

most important contributions come from unexpected inflation (especially for bond and selected industry

portfolios) and to some extent, real consumption growth risk, although the heterogeneity across portfolios

is pronounced (small capitalization stocks are particularly well explained by this factor). In the case

of bond portfolios, most predictable variation is explained, after taking into credit risk exposures into

account, by unexpected inflation, economy-wide market risks, and Cochrane and Piazzesi’s specific factor;

20The 95% credibility regions do little to cast any doubts on this obvious outperformance of the B-TVB-SV framework

over the competing models. For instance, the 2.5% posterior lower bound in the case of B-TVB-SV is 62.2% vs. 22.6% in

the case of B-TVP and 19.0% in the case of the homoskedastic B-TVB.
21These ratios may exceed 100% because  [ (

9

=1 |−1|Z−1)] will also reflect the contribution of covariance
terms between factor terms.
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interestingly, the contribution of yield curve shocks to priced risk is limited.

5.3. Pricing Errors

We follow Geweke and Zhou (1996) and measure the closeness of the pricing approximation provided by

an approximate version of (9), −1[] ' 0+
P

=1 , by computing at each time  the average

squared recursive pricing error across all the  test assets/portfolios,

2 =
1



h
β00

³
I −B

¡
B0B

¢−1
B0
´
β0

i
 = 1   (17)

where β0 is the  × 1 vector of intercepts, I is an -dimensional identity matrix, and B ≡
(ι β1 β) is a  ×  matrix collecting vectors of time  betas of all the assets/portfolios vs.

each of the  risk factors, with β ≡ (1  0)
0 a  × 1 vector of factor loadings on the th risk

factor. These pricing errors are recursive because at each point in time they are obtained using only

information available up to that point. Because our Gibbs sampling scheme allows to derive posteriors

for all the objects that enter β0 and B we also compute the posterior density of the average (squared)

pricing error statistic, as discussed in Geweke and Zhou (1996).

Table 5 reports the average monthly pricing errors,  , for each of our models across different

sub-samples. Using sub-samples wants to allow any instability in pricing performance to emerge and

be adequately detected.22 With reference to the full-sample, the B-TVB-SV model yields both the

lowest average pricing error (0.21% per month) and the lowest median posterior error (0.19%). Such

statistics are practically between one-half and two-thirds those that one would obtain under a B-TVB

homoskedastic model (0.41 and 0.35 percent, respectively). Interestingly, the B-TVP model seems to fit

the data well on the basis of the Bayes odds ratio in Table 3, but fails to price our test portfolios (it

gives average and median posterior errors of 0.54 and 0.51 percent, respectively) as accurately as the

homoskedastic B-TVB model does. The performance of the classical two-step F-MB scheme is poor,

yielding average and median pricing errors of 0.63%. Moreover, B-TVB-SV consistently outperforms all

other models in all sub-samples. Its advantage is always substantial in the sense that B-TVB-SV always

cuts the average error of the second best model by at least 40%. Interestingly, the pricing errors tend

to increase over our sample, especially when one compares the 1982-1998 with the 1999-2011 interval.

However, there is no evidence of the errors during the Great Financial Crisis period (2007-2011) being

systematically higher than in the overall 1999-2011 sub-sample.

Figure 11 plots the time series of average pricing errors  for all the models (top panel) and

only for the B-TVB-SV and the B-TVP cases, rescaling the errors from the former model (on the right

axis) to better emphasize similarities and differences (bottom panel). The top panel shows that, apart

22The 2007-2011 sub-sample specifically addresses pricing performance during the recent financial crisis.
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from a short period in early 1993 (when B-TVB became competitive), B-TVB-SV gave uniformly lower

average pricing errors than all other models. The F-MB scheme gives uniformly high but constant

average errors. The B-TVP model gives a highly variable performance, with enormous spikes of mis-

spricing around 1993, in 1999-2000, and during the financial crisis. The bottom panel of the figure shows

that the dynamics of pricing errors under B-TVB-SV and B-TVP–both models including a stochastic

volatility component–are not that dissimilar, in the sense that also errors from B-TVB-SV spike up in

1993, 1999-2001 and during 2011. However, the more parsimonious dynamics imposed by infrequent,

large structural breaks under B-TVB-SV reduces the pricing errors also keeping the latter more stable

across our sample.

6. Conclusion

In this paper, we have proposed a new way to parameterize and estimate in state-space form a typical

MFAPM with time-varying risk exposures and premia. This Bayesian state-space approach is based on

a formal modelling of the latent process followed by risk exposures and idiosyncratic volatility capable to

capture structural shifts in parameters. This method can also be interpreted as a novel way to overcome

the two-pass approach advocated by Fama and MacBeth (1973) and used in a substantive body of

applied work in finance. Given a general B-TVB-SV framework, we have also considered special cases

that are obtained by imposing restrictions, and in particular a B-TVP-SV model in which betas change

continuously but in small amounts, and a homoskedastic B-TVB model in which volatility is constant.

Our application to monthly, 1972-2011 U.S. stock and bond returns shows that the two-stage ap-

proach yields results that are not always reasonable. For instance, very few risk factors appear to be

priced and, when they are, they carry the wrong sign. Moreover, the fit provided by the standard

two-step approach is poor. On the contrary, the empirical implications of a Bayesian state-space im-

plementation of (5)- (6) are plausible and there are indications that the model is consistent with the

data. For instance, most portfolios do not appear to have been grossly mispriced and a few risk premia

are precisely estimated with a plausible sign. Market, liquidity, and industrial production (real output)

growth risks are significantly priced. This confirms the early evidence in McElroy and Burmeister (1988)

that appropriate econometric methods reveal a strong explanatory power of macroeconomic factors in

addition to that provided by the plain vanilla, CAPM-style market portfolio. Bayes odds ratios and

marginal likelihood comparisons indicate that the B-TVB-SV outperforms both the two-step F-MB and

the homoskedastic B-TVB models. The heteroskedastic B-TVP appears to be closer to the full-scale

B-TVB-SV one. However, an analysis of the average pricing errors shows that large but infrequent

breaks in factor exposures are considerably more successful. Finally, the finding that the heteroskedastic

B-TVB models ranks second below B-TVB-SV is a powerful indication of the importance to explicitly

model stochastic volatility when implementing multi-factor asset pricing models.
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Appendix A: The Gibbs Sampling Algorithm

Here we derive the full conditional posterior distributions of the latent variables and the model

parameters discussed in Section 3. For the ease of exposition we report the results for the th asset.

Step 1: Sampling 

The structural breaks in the conditional dynamics of the factor loadings measured by the latent binary

state 0, are drawn using the algorithm of Gerlach et al. (2000). This algorithm increases the

efficiency of the sampling procedure since allows to generate κ = (0), without conditioning

on the relative regression parameters β = (0  ). The conditional posterior density of κ,

 = 1    = 1   , for each of i asset/portfolio is defined as


¡
0|K[−]KΣ RF

¢ ∝  (R|KKΣ F) 
¡
0|K[−]KΣ F

¢
∝  (+1 |1KKΣ F) 

¡
|1−1K[1:]KΣ F

¢

¡
0|K[−]KΣ F

¢
(18)
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where K[−] =
n
{}=0

o
=16=

, K[1:] =
n
{}=0

o
=1

and K = {}=1. We assume

that each of the  breaks are independent from each other such that the joint density is defined

as
Q

=0 

 (1− )

1− . The remaining densities  (+1 |1KKΣ F) and

 (|1−1KKΣ F) are evaluated as in Gerlach et al. (2000). Notice that, since 

is a binary state the integrating constant is easily evaluated.

Step 2: Sampling the Factor Loadings B.

The full conditional posterior density for the time-varying factor loadings is computed using a stan-

dard forward filtering backward sampling as in Carter and Kohn (1994). For each of the  = 1 

assets, the prior distribution of the 0   loadings is a multivariate normal with the location para-

meters corresponding to the OLS parameter estimates and a covariance structure which is diagonal and

defined by the variances of the OLS estimates. The initial prior are sequentially updated via the Kalman

Filtering recursion, then the parameters are drawn from the posterior distribution which is generated

by a standard backward recursion (see Fruhwirth-Schnatter 1994, Carter and Kohn 1994, and West and

Harrison 1997).

Steps 3 and 4: Sampling the Breaks and the Values of the Idiosyncratic Volatility.

In order to draw the structural breaks K and the idiosyncratic volatilities Σ for each of the ith

portfolios, we follow a similar approach as in step 1. The stochastic breaks K are drawn by using the

Gerlach et al. (2000) algorithm. The conditional variances ln2, does not show a linear structure even

though still preserving the standard properties of state space models. The model is rewritten as

ln

⎛⎝ − 0 −
X
=1



⎞⎠2 = ln2 + 

ln2 = ln
2
−1 +  (19)

where  = ln 2 has a ln
2(1). Here we follow Omori et al. (2010) and approximate the ln2(1)

distribution with a finite mixture of ten normal distributions, such that the density of  is given by

() =

10X
=1


1q
2

 2
exp

Ã
−( − )

2

2

!
(20)

with
P10

=1  = 1. The appropriate values for   and 2
 can be found in Omori et al. (2010).

Mechanically, in each step of the sampler we simulate at each time  a component of the mixture. Given

the mixture component, we can apply the standard Kalman filter such that K and Σ can be sampled

in a similar way as K[] and 0[]  [] in the first and second step. The initial prior of the log

idiosyncratic volatility ln20 is normal with mean -1 and conditional variance equal to 0.1.

Step 5b. Sampling the Time-Varying Risk Premia .

The cross-sectional equilibrium restriction in (2) is satisfied at each time t conditional on the latent
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states B|−1 =
½n

|−1
o
=1

¾

=0

and Σ =
©
σ2
ª
=1
. Given an initial normal-inverse gamma prior,

the full conditional of the equilibrium risk premia λ = (0  ) at time t, is defined as

(λ| B|−1ΣR) ∝ |Σ∗ |−
1
2 exp

½
−1
2
(R −μ∗ )

0
(Σ∗ )

−1 (R − μ∗ )
¾

(21)

where R = (1) and Σ0, μ0 respectively the prior mean and variance of , such that the

conditional (ex-ante time-varying) risk premia can be sampled at each time t by a normal distribution

with μ∗ = Σ∗ (Σ
−1
0 μ0+−2X0−1R) and Σ

∗
 = (Σ

−1
0 +−2X

0
−1X−1)−1, X−1 ≡

£
B|−1

¤
, respectively

as location and scale parameters. The conditional posterior for the variance of the risk premia 2 is an

inverse gamma distribution

(2|λB|−1ΣR) ∝ −0 exp
µ
− 0

2

¶
Q
=1

1


exp

⎛⎜⎝−
³
 − 0 −

P
=1 |−1

´2
22

⎞⎟⎠ (22)

such that 2 can be sampled from an inverse-gamma distribution with scale parameter  = 0 +P
=1

³
 − 0 −

P
=1 |−1

´2
and degrees of freedom  = 0 + .

Step 5b. Sampling the Stochastic Breaks Probabilities.

The full conditional posterior densities for the breaks probabilities π = (1) is given by


¡
π|2BΣKRF

¢ ∝ Q
=0


−1
 (1− )

−1 Q
=1



 (1− )

1− (23)

and hence the individual  parameter can be sampled from a Beta distribution with shape parameters

+
P

=1  and +
P

=1(1−) for  = 0 . Likewise the full conditional posterior distribution
for the breaks probabilities in the idiosyncratic volatilities  is given by


¡
 |2BΣKRF

¢ ∝ −1 (1− )
−1 Q

=1

 (1− )
1−

such that the individual  can be sampled from a Beta distribution with shape parameters  +P
=1  and  +

P
=1(1− ) for  = 1   .

Step 5c. Sampling the Conditional Variance of the States.

The prior distributions for the conditional volatilities of the factor loadings  for  = 0  are

inverse-gamma


¡
2 |BΣKKRF

¢ ∝ 
−
 exp

Ã
− 

22

!
Q
=1

Ã
1


exp

Ã
− ¡−−1¢2

22

!!

(24)

hence 2 is sampled from an inverse-gamma distribution with scale parameter  +
P

=1 (−
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−1)2 and degrees of freedom equal to  +
P

=1 . Likewise the full conditional of the variance for

the idiosyncratic log volatility 2 is defined as


¡
2 |BΣKKRF

¢ ∝ − exp

µ
− 

22

¶
Q
=1

Ã
1


exp

Ã
− ¡ln2 − ln2−1¢2

22

!!

(25)

such that 2 is sampled from an inverted Gamma distribution with scale parameter +
P

=1 (ln
2
−

ln2−1)
2 and degrees of freedom equal to  +

P
=1 .

Choice of Priors

Realistic values for the different prior distributions obviously depend on the problem at hand.23 In

general, we use weak priors, excluding the size of the breaks Q and the probabilities Pr(1 = 1) and

Pr(2 = 1) for which our priors are quite informative. This is also important because these priors

restrict the maximum number of breaks of maximum magnitude and therefore help to identify the factor

exposures, which is otherwise rather problematic because linear multifactor models are subject to well-

known indeterminacy problems upon rotations of factors and risk premia (see e.g., McCulloch and Rossi,

1991). The prior shape parameters for the probability of breaks in the dynamics of the price sensitivities

is set to be  = 32 and  = 60. As such,

 [ ] =
32

32 + 60
= 005 and  [ ] =

µ
32× 60

(32 + 60)2(32 + 60 + 1)

¶12
= 003

which means an expected 5% prior probability of a random shock in the dynamics of factor loadings.

With respect to the idiosyncratic volatility, the shape hyperparameters are set to be  = 1 and  = 99,

such that

 [ ] =
1

1 + 99
= 001 and  [ ] =

µ
99

1002 × 101
¶12

= 001

which set the expected prior probability of having a break in the dynamics of idiosyncratic risks to

be equal to 1%. These small prior probabilities makes the modelling dynamics more parsimonious,

mitigating the magnitude of prior information, letting the data speak about the likelihood of random

breaks. The prior beliefs on the size of the breaks are inverse-gamma distributed. The prior scale

hyper-parameters    and the    degrees of freedom are calibrated supporting a prior view for

premiums to be normally distributed with zero mean and variance such that there is 95% probability

that annualized premia are smaller in absolute value than the larger between the absolute value between

the minimum and the maximum return observed in the sample for all the assets. Finally, the prior

residual variance is centered at about 10, a value that appeared in the higher range of the maximum

likelihood estimates. All other priors imply that the posteriors tend to be centered around their maximum

likelihood estimates which eases comparisons with the existing literature.

23Groen, Paap and Ravazzolo (2012) discuss prior sensitivity analysis and MCMC convergence tests, see Appendices C

and D, which are also used in this paper. Specific prior values and results for convergence tests are available upon request.
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Appendix B: Variance Ratio and Decomposition Tests

We use the posterior densities of the time series of factor loadings and risk premia to perform a

number of tests that allow us to assess whether a posited asset pricing framework may explain an

adequate percentage of excess asset returns. (9) decomposes excess asset returns in a component related

to risk, represented by the term
P

=1 |−1 plus a residual 0 + . In principle, a multi-factor

model is as good as the implied percentage of total variation in excess returns explained by its first

component,
P

=1 |−1. However, here we should recall that even though (9) refers to excess

returns, it remains a statistical implementation of the framework in (1). This implies that in practice

it may be naive to expect that
P

=1 |−1 be able to explain much of the variability in excess

returns. A more sensible goal seems to be that
P

=1 |−1 ought to at least explain the predictable

variation in excess returns. We therefore follow earlier literature, such as Karolyi and Sanders (1998),

and adopt the following approach. First, the excess return on each asset is regressed onto a set of 

instrumental variables that proxy for available information at time − 1, Z−1,

 = 0 +

X
=1

−1 + , (26)

to compute the sample variance of fitted values,

 [ (|Z−1)] ≡  

"b0 + X
=1

b−1

#
 (27)

where the notation  (|Z−1) means “linear projection” of  on a set of instruments, Z−1. Second,
for each asset  = 1   , a time series of fitted (posterior) risk compensations,

P
=1 |−1, is

regressed onto the instrumental variables,

X
=1

|−1 = b00 + X
=1

b0−1 + 0 (28)

to compute the sample variance of fitted risk compensations:

 

⎡⎣
⎛⎝ X

=1

|−1|Z−1

⎞⎠⎤⎦ ≡  

"b00 + X
=1

b0−1

#
 (29)

At this point, it is informative to compute and report two variance ratios, commonly called  1 and

 2, after Ferson and Harvey (1991):
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 1 ≡
 

h

³P

=1 |−1|Z−1
´i

 [ (|Z−1)]  0 (30)

 2 ≡
 

h

³
 −

P
=1 |−1|Z−1

´i
 [ (|Z−1)]  0 (31)

VR1 should be equal to 1 if the multi-factor model is correctly specified, which means that all the

predictable variation in excess returns is captured by variation in risk compensations; at the same

time, VR2 should be equal to zero if the multi-factor model is correctly specified. Importantly, when

these decomposition tests are implemented using the estimation outputs obtained from our B-TVB-SV

framework, drawing from the joint posterior densities of the factor loadings |−1 and the implied risk

premia   = 1   ,  = 1 , and  = 1   , and holding the instruments fixed over time, it

is possible to compute VR1 and VR2 in correspondence to each of such draws and hence obtain their

posterior distributions.24

Finally, the predictable variation of returns due to the multi-factor model may be further decomposed

into the components imputed to each of the individual systematic risk factors, by computing the factoring

of  [ (
P

=1 |−1|Z−1)] as

X
=1

 
h

³
|−1|Z−1

´i
+

X
=1

X
=1

[
³
|−1|Z−1

´
 
³
|−1|Z−1

´
] (32)

and tabulating  
h

³
|−1|Z−1

´i
for  = 1  as well as the residual factor

P
=1

P
=1

[
³
|−1|Z−1

´
 

³
|−1|Z−1

´
] to pick up any interaction terms. Note that because

of the existence of the latter term, the equality

X
=1

 
h

³
|−1|Z−1

´i
 

h

³P

=1 |−1|Z−1
´i = 1 (33)

fails to hold, i.e., the sum of the  risk compensations should not equal the total predictable variation

from the asset pricing model because of the covariance among individual risk compensations. This derives

from the fact that even though in (1) the risk factors are assumed to be orthogonal, this does not imply

that their time-varying total risk compensations (|−1 for  = 1 ) should be orthogonal.

24Notice that  1 = 1 does not imply that  2 = 0 and viceversa, because

 [ (|Z−1)] 6=  






=1

̂̂|−1|Z−1


+  





 − ̂0 −


=1

̂−1|Z−1



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Table 1: Descriptive Statistics

This table reports the descriptive statistics for each of the 23 portfolios used in the empirical analysis
as well as the risk factors and the instrumental variables. Data are monthly and cover the sample
period 1972:01 - 2011:12.

Portfolio/Factor Mean Median Std. Dev. Sharpe Ratio

10 Industry Portfolios, Value-Weighted

Non-Durable Goods 1.107 1.135 4.473 0.248

Durable Goods 0.809 0.815 6.649 0.122

Manufacturing 0.988 1.195 5.195 0.190

Energy 1.163 0.990 5.672 0.205

High-Tech 0.924 0.950 6.897 0.134

Telecommunications 0.948 1.175 4.891 0.194

Shops and Retail 0.974 1.060 5.447 0.179

Healthcare 0.990 1.050 5.094 0.194

Utilities 0.933 0.995 4.142 0.225

Other 0.871 1.320 5.439 0.160

10 Size-Sorted Portfolios, Value-Weighted

Decile 1 1.073 1.205 6.347 0.169

Decile 2 1.083 1.390 6.491 0.167

Decile 3 1.125 1.545 6.162 0.182

Decile 4 1.089 1.500 5.952 0.183

Decile 5 1.127 1.680 5.811 0.194

Decile 6 1.081 1.180 5.412 0.200

Decile 7 1.088 1.255 5.382 0.202

Decile 8 1.024 1.275 5.262 0.195

Decile 9 0.986 1.335 4.853 0.203

Decile 10 0.844 1.075 4.473 0.189

Bond Returns

10-Year T-Note 0.679 0.628 2.299 0.295

5-Year T-Note 0.635 0.585 1.629 0.390

Baa Corp. Bond (10-20 years) 0.831 0.863 3.237 0.257

Economic Risk Factors

Excess Value-Weighted Mkt 0.452 0.800 4.681 0.097

Default Premium 0.192 0.461 3.481

Term Spread 0.000 0.000 0.406

Industrial Prod. Growth 0.186 0.256 0.755

Real Per-capita Cons. Growth 0.255 0.262 0.338

Real T-Bill Interest Rate 0.087 0.102 0.357

Unexpected Inflation 0.000 -0.016 0.301

Bond Risk Factor 1.093 0.982 1.944 0.562

Liquidity Factor 0.497 0.232 3.621 0.137

Instrumental Variables

Term Yield Spread 1.715 1.910 1.329

Credit Yield Spread 1.111 0.960 0.488

Dividend Yield 3.029 2.952 1.259
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Table 2: Risk Premia

This table reports statistics describing the posterior distribution of the risk premia on each factor
across different model specifications. Data are monthly and cover the sample period 1972:01 - 2011:12.
The first ten years of monthly data are used to calibrate the priors for all the models except for the
standard two-step Fama-MacBeth procedure.

Full sample (Jan. 1982 - Dec. 2011)

Average Std. Error t-stat p-value 2.5% 50% 97.5%

Two-step Fama-MacBeth approach

Intercept 0.2909 0.1363 2.1350 0.0336 -3.3346 0.3281 3.3471

Market 0.2593 0.1408 1.8414 0.0665 -8.7553 0.6739 7.9319

Credit Spread 0.2208 0.2706 0.8161 0.4151 -4.5672 0.3022 4.8480

Term spread 0.0042 0.0347 0.1201 0.9045 -1.0198 -0.0018 1.1440

IP Growth -0.0130 0.0092 -1.4086 0.1600 -0.3368 -0.0210 0.3218

Real Consuption Growth 0.0061 0.0039 1.5485 0.1226 -0.1917 -0.0006 0.2309

Real T-bill Rate -0.0264 0.0412 -0.6414 0.5217 -1.4068 0.0145 1.4703

Unexpected Inflation -0.0085 0.0062 -1.3670 0.1727 -0.2079 -0.0134 0.2100

Bond Risk Factor -0.4633 0.1883 -2.4598 0.0145 -6.9685 -0.3831 5.1747

Liquidity Factor 0.4012 0.3471 1.1558 0.2487 -12.4488 0.1301 12.9321

Bayesian model with time-varying betas and idiosyncratic risk

Intercept 0.4125 0.2924 1.4108 0.1593 0.3406 0.4913 0.6432

Market 0.3391 0.1298 2.6119 0.0095 0.1207 0.3482 0.5515

Credit Spread -0.1339 0.1145 -1.1688 0.2434 -0.0471 0.1291 0.3172

Term Spread -0.0149 0.0306 -0.4880 0.6259 -0.0334 0.0144 0.0616

IP Growth 0.0190 0.0076 2.4940 0.0132 0.0031 0.0188 0.0231

Real Consuption Growth 0.0020 0.0044 0.4575 0.6476 -0.0054 0.0018 0.0090

Real T-bill Rate 0.0199 0.0300 0.6616 0.5087 -0.0279 0.0187 0.0682

Unexpected Inflation -0.0206 0.0064 -3.2095 0.0015 -0.0211 -0.0148 -0.0007

Bond Risk Factor -0.0259 0.0719 -0.3605 0.7187 -0.1449 -0.0218 0.0916

Liquidity Factor 0.3172 0.1560 2.0341 0.0428 0.0312 0.3214 0.5719

Bayesian time-varying parameter model (with stochastic volatility)

Intercept 0.5862 0.0787 7.4482 0.0000 0.4575 0.5889 0.7172

Market 0.2197 0.0988 2.2237 0.0269 0.0472 0.2220 0.3786

Credit Spread 0.0139 0.0919 0.1516 0.8796 -0.1381 0.0100 0.1710

Term Spread 0.0030 0.0213 0.1401 0.8887 -0.0312 0.0020 0.0382

IP Growth -0.0079 0.0075 -1.0473 0.2958 -0.0209 -0.0077 0.0036

Real Consuption Growth 0.0047 0.0040 1.1780 0.2397 -0.0013 0.0046 0.0114

Real T-bill Rate 0.0067 0.0216 0.3094 0.7573 -0.0278 0.0055 0.0424

Unexpected Inflation -0.0092 0.0054 -1.6933 0.0914 -0.0183 -0.0090 -0.0001

Bond Risk Factor -0.0126 0.0492 -0.2550 0.7989 -0.0982 -0.0093 0.0666

Liquidity Factor 0.2071 0.1050 1.9726 0.0495 0.0325 0.2066 0.3720

Bayesian model with time-varying betas (No stochastic volatility)

Intercept 0.5550 0.2775 1.9996 0.0464 0.2500 0.5421 0.8540

Market 0.3006 0.1448 2.0758 0.0388 0.0291 0.3028 0.5814

Credit Spread 0.1162 0.1582 0.7346 0.4631 -0.1080 0.0967 0.3963

Term Spread 0.0130 0.0550 0.2368 0.8130 -0.0812 0.0105 0.1120

IP Growth -0.0067 0.0101 -0.6573 0.5115 -0.0218 -0.0060 0.0111

Real Consuption Growth 0.0030 0.0063 0.4788 0.6324 -0.0072 0.0026 0.0141

Real T-bill Rate 0.0191 0.0498 0.3837 0.7014 -0.0620 0.0165 0.1016

Unexpected Inflation -0.0024 0.0080 -0.3066 0.7594 -0.0172 -0.0021 0.0103

Bond Risk Factor 0.0431 0.1119 0.3847 0.7007 -0.1242 0.0313 0.2512

Liquidity Factor 0.0474 0.2419 0.1958 0.8449 -0.3394 0.0229 0.4512
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Table 3: Marginal Likelihoods and Bayes Factors Across Alternative Model Specifications

This table reports the values of the marginal log-likelihoods and the relative Bayes Factors for different
model specifications. The values reported are also disaggregated by computing the contributions
coming from each of the portfolios under investigation. B-TVB-SV stands for Bayesian time-varying
betas, stochastic volatility model, while B-TVB and B-TVP are, respectively, the dynamic Bayesian
model restricted to have constant conditional volatility and random-walk betas. Fama-MacBeth is the
standard two-step procedure. BF1 is the Bayes Factor for the B-TVB-SV model vs. the no-stochastic
volatility restriction. Likewise, BF2 and BF3 are the Bayes Factors comparing the B-TVB-SV model
with the B-TVP and the Fama-MacBeth approaches, respectively.

B-TVB-SV B-TVB B-TVP Fama-MacBeth BF1 BF2 BF3

10 Industry Portfolios, Value-Weighted

Non Durable Goods -445.39 -1408.71 -635.40 -3131.83 963.32 190.00 2686.44

Durable Goods -700.77 -1980.33 -832.07 -4412.78 1279.56 131.29 3712.01

Manufacturing -330.98 -1199.96 -522.95 -3851.11 868.98 191.97 3520.13

Energy -789.61 -1793.14 -821.64 -2687.83 1003.53 32.03 1898.22

High Tech -571.53 -1732.31 -717.08 -7269.27 1160.78 145.55 6697.74

Telecommunications -614.18 -1634.38 -734.46 -3353.11 1020.20 120.28 2738.93

Shops and Retail -481.33 -1370.61 -648.98 -4271.70 889.29 167.65 3790.38

Health -613.64 -1591.56 -706.14 -3107.84 977.92 92.50 2494.21

Utilities -572.88 -1684.43 -698.85 -1955.89 1111.55 125.96 1383.01

Other -270.90 -1345.87 -519.80 -6041.50 1074.97 248.90 5770.60

10 Size-sorted Portfolios, Value-Weighted

Decile 1 -620.66 -1756.62 -725.44 -7211.50 1135.96 104.77 6590.84

Decile 2 -535.44 -1632.89 -678.94 -6578.42 1097.46 143.50 6042.98

Decile 3 -428.11 -1337.08 -616.02 -6506.86 908.96 187.90 6078.74

Decile 4 -392.01 -1262.43 -589.11 -7127.84 870.43 197.11 6735.84

Decile 5 -335.93 -1134.01 -543.20 -7517.14 798.08 207.27 7181.21

Decile 6 -259.32 -932.83 -506.59 -8008.70 673.51 247.27 7749.38

Decile 7 -202.41 -923.42 -468.69 -7121.70 721.01 266.28 6919.29

Decile 8 -149.14 -882.35 -446.04 -8924.98 733.21 296.90 8775.84

Decile 9 -95.261 -601.39 -365.63 -8158.70 506.13 270.37 8063.44

Decile 10 -54.063 -544.78 -329.60 -7820.37 490.72 275.55 7766.31

Bond Returns

10 - Yrs Treasury -188.98 -1052.55 -422.69 -9201.70 863.57 233.70 9012.72

5 - Yrs Treasury -41.972 -549.00 -320.55 -7951.90 507.03 278.58 7909.93

Baa Corporate Bonds (10-20 years) -185.96 -1050.90 -420.63 -5522.90 864.94 234.67 5336.94

Overall -386.11 -1278.33 -576.98 -5988.50 892.22 190.87 5602.40
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Table 5: Average Pricing Errors

This table reports the average pricing errors for each of the models under investigation across different
subsamples as well as in the full sample. B-TVB-SV stands for Bayesian time-varying betas, stochastic
volatility model, while B-TVB and B-TVP are, respectively, the dynamic Bayesian model restricted to
have constant conditional volatility and random-walk betas. Fama-MacBeth is the standard two-step
procedure. The table reports the average (over time), the posterior standard deviation as well as the
confidence interval at the 95% level.

Average Pricing Errors

Mean % Std % 2.5 % 50 % 97.5 %

Panel A: Full-Sample

B-TVB-SV 0.2108 0.0623 0.1363 0.1902 0.3231

B-TVB 0.4126 0.1588 0.2512 0.3459 0.7325

B-TVP 0.5401 0.1804 0.3113 0.5061 0.8126

Fama-MacBeth 0.6303 0.0159 0.6107 0.6258 0.6633

Panel B: 1982:01 - 1999:01

B-TVB-SV 0.1926 0.0431 0.1443 0.1851 0.2574

B-TVB 0.3935 0.0314 0.3511 0.3921 0.4521

B-TVP 0.5233 0.1653 0.3202 0.4759 0.8101

Fama-MacBeth 0.6278 0.0151 0.6092 0.6238 0.6585

Panel C: 1999:01 - 2011:11

B-TVB-SV 0.2624 0.0672 0.1454 0.2707 0.3525

B-TVB 0.4682 0.119 0.2806 0.4501 0.7068

B-TVP 0.6359 0.1993 0.3544 0.6456 0.9027

Fama-MacBeth 0.6354 0.0162 0.6168 0.6321 0.6653

Panel D: 2007:01 - 2011:11

B-TVB-SV 0.2891 0.0613 0.1673 0.2977 0.3952

B-TVB 0.5865 0.0906 0.4718 0.5713 0.7559

B-TVP 0.6397 0.1431 0.4029 0.6616 0.8168

Fama-MacBeth 0.6523 0.0179 0.6164 0.6439 0.6799
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Figure 1: Mean Posterior Probability of Breaks in Factor Loadings Across Assets/Portfolios

This figure reports the average over the sample of median posterior probabilities of a break in betas
across portfolios and factors for both the B-TVB-SV and B-TVB models. The sample period is
1972:01 - 2011:12. The first 120 monthly observations are used as a training sample in order to
calibrate the prior distribution for both latent states and parameters. The heating map is reported
on the right-hand side.

(a) Bayesian Dynamic Model with Instability in Betas and Conditional Volatility

(b) Bayesian Dynamic model with Constant Conditional Volatility
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Figure 10: Average Pricing Errors

This figure reports the time series of the average pricing errors. The sample period is 1972:01 -
2011:12. The first 120 monthly observations are used a training sample in order to calibrate the prior
distribution for both latent states and parameters. Panel A reports the average pricing error across
models. Panel B reports the rescaled values of the average pricing errors for the B-TVB-SV and the
B-TVP models, respectively.

(a) Average Pricing Errors Across Models

(b) Average Pricing Errors for B-TVB-SV and B-TVP (Rescaled)
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