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Abstract

A popular macroeconomic forecasting strategy takes combinations across many

models to hedge against instabilities of unknown timing; see (among others) Stock

and Watson (2004), Clark and McCracken (2010), and Jore et al. (2010). Existing

studies of this forecasting strategy exclude Dynamic Stochastic General Equilib-

rium (DSGE) models, despite the widespread use of these models by monetary

policymakers. In this paper, we combine inflation forecast densities utilizing an

ensemble system comprising many Vector Autoregressions (VARs), and a policy-

making DSGE model. The DSGE receives substantial weight (for short horizons)

provided the VAR components exclude structural breaks. In this case, the inflation

forecast densities exhibit calibration failure. Allowing for structural breaks in the

VARs reduces the weight on the DSGE considerably, and produces well-calibrated

forecast densities for inflation.
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1 Introduction

A common macroeconomic forecasting strategy combines the forecasts from many models

to hedge against instabilities of unknown timing. Recent studies include (among others)

Stock and Watson (2004), Clark and McCracken (2010), and Jore et al. (2010). The first

two papers take the view that equal-weighting of component models can produce good

point forecasts; the last study provides an example in which components weighted by the

logarithmic score produce well-calibrated ensemble forecast densities.

The existing macro forecast combination literature excludes Dynamic Stochastic Gen-

eral Equilibrium (DSGE) models, in part because of the computational burden imposed

by DSGE forecasting. Their absence presents a practical difficulty for the implementation

of forecast combination methods at central banks. Many central banks have invested heav-

ily in DSGE models, in which the growth model yields a linear and constant parameter

reduced-form representation. The point forecasts from this class of (constant parameter)

policymaking DSGE model typically match the accuracy of benchmark autoregressive

representations.

In this paper, we use an expert combination framework to produce ensemble forecast

densities for inflation from a system of Vector Autoregressions (VARs) and a DSGE

model. The forecasts from the models are combined using the logarithmic score of the

VAR forecast densities; see (among others) Jore et al. (2010). We evaluate the VAR-DSGE

ensemble forecast densities for inflation using probability integral transforms (pits). This

offers a means of evaluating density forecasts for general but unknown loss functions. We

compare and contrast the calibration properties of the VAR-DSGE ensemble with and

without structural break VAR components.

To ensure relevance for policymakers, we selected a DSGE model used routinely in

practice by an Inflation Targeting central bank; namely NEMO, the Norges Bank core

policymaking model. This DSGE model shares many features typical of the DSGE class

of policymaking model. As one might expect given the conventional wisdom in the DSGE

literature, the properties of the point forecasts for inflation from this model match the

accuracy of benchmark autoregressive specifications.

Turning to our results, we find that our VAR-DSGE ensemble which allows for breaks

gives well-calibrated forecast densities for inflation, but relatively small weight is attached

to the DSGE. Restricting attention to VAR components without breaks, the DSGE re-

ceives a substantial weight for some horizons. For example, for the one-step ahead case,

the weight on the DSGE model reaches 60 percent by the end of our evaluation. But



without break components the VAR-DSGE ensemble produces poorly calibrated forecast

densities at the horizons for which the DSGE receives most weight. The break variants

capture the shifts in volatility present in our “Great Moderation” sample. Although

unimportant for point forecast evaluations based on Root Mean Squared Forecast Error

(RMSFE), excluding break components impairs forecast density calibration; see Clark

(2009) for a discussion of parameter change and VAR forecast density calibration.

The plan of the paper is as follows. In the subsequent section, we outline our methods

for ensemble forecasting. In Section 3, we describe our component models and data; and

in Section 4, we summarize our recursive forecasting exercise. Our results are presented

in Section 5. Some ideas for further research are contained in the final section.

2 Methods for ensemble forecasting

We construct the predictive densities from the large number of component models using

forecast density combination methods. Earlier papers by Jore et al. (2010) and Garratt

et al. (2009) take this approach to ensemble modeling. Although point forecast combina-

tion has a longer tradition in economics (e.g., see Bates and Granger (1969)), the focus

of this study is on providing monetary policymakers with an estimate of the entire prob-

ability distribution of the possible future values of the variable of interest—the forecast

density. Many Inflation Targeting central banks (including the Bank of England, Norges

Bank, and Sveriges Riksbank) provide forecast densities for inflation (and other variables)

to communicate the policy stance.1

2.1 Forecast density combination

The ensemble densities are constructed using an expert combination methodology, utiliz-

ing the linear opinion pool; see, for example, Morris (1974, 1977), Winkler (1981), Lindley

(1983) and Genest and McConway (1990):

p(Xτ,h) =
N∑
i=1

wi,τ ,h g(Xτ,h | Ii,τ ), τ = τ , . . . , τ , (1)

where g(Xτ,h | Ii,τ ) are the h-step ahead forecast densities from component model i, i =

1, . . . , N of a random variable Xτ , (with realization xτ ), conditional on the information

1The Federal Reserve recently moved to publish FOMC member forecasts—in effect, a forecast interval.
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set Iτ . The non-negative weights, wi,τ ,h, in this finite mixture sum to unity.2 Furthermore,

the weights may change with each recursion in the evaluation period τ = τ , . . . , τ . Since

the ensemble density defined by equation (1) is a mixture it delivers a more flexible

distribution than each of the component densities from which it is derived. AsN increases,

the ensemble density becomes more and more flexible, with the potential to approximate

non-linear specifications.

We construct the ensemble weights based on the fit of the individual model forecast

densities. Like Amisano and Giacomini (2007) and Hall and Mitchell (2007), we use the

logarithmic score to measure density fit for each component model through the evaluation

period. The logarithmic score of the i-th density forecast, ln g(Xτ,h | Ii,τ ), is the logarithm

of the probability density function g(. | Ii,τ ), evaluated at the outturn xτ,h. The logarith-

mic scoring rule gives a high score to a density forecast that assigns a high probability to

the realized value. Following Jore et al. (2010) the recursive weights for the h-step ahead

densities take the form:

wi,τ ,h =
exp

[∑τ−h
τ−10 ln g(xτ,h | Ii,τ )

]
∑N

i=1 exp
[∑τ−h

τ−10 ln g(xτ,h | Ii,τ )
] , τ = τ , . . . , τ (2)

where τ−10 to τ comprises the training period used to initialize the weights. Computation

of these weights is feasible for a large N ensemble. Given the uncertain instabilities

problem, the recursive weights should be expected to vary across τ .

Our ensemble methodology has many similarities with an approximate predictive like-

lihood approach (for the one-step horizon); see Raftery and Zheng (2003), and Eklund and

Karlsson (2007). Given our definition of density fit, the model densities are combined using

Bayes’ rule with equal (prior) weight on each model—which a Bayesian would term non-

informative priors. Garratt et al. (2009) discuss ensemble modeling in macro-econometric

applications, and other applied statistics fields. Bache et al. (2010) and Geweke (2009)

discuss combinations in an incomplete model space in which the true model is likely

absent.

2.2 Forecast density evaluations

A popular evaluation method for forecasts densities, following Rosenblatt (1952), Dawid

(1984) and Diebold et al. (1998), evaluates relative to the “true” but unobserved density

2The restriction that each weight is positive could be relaxed; for discussion see Genest and Zidek
(1986).
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using the probability integral transforms (pits) of the realization of the variable with

respect to the forecast densities. A density forecast can be considered optimal (regardless

of the user’s loss function) if the model for the density is correctly calibrated; i.e., if

the pits zτ,h, where zτ,h =

∫ xτ,h

−∞
p(u)du, are uniform and, for one-step ahead forecasts,

independently and identically distributed. In practice, therefore, density evaluation with

the pits requires application of tests for goodness-of-fit and independence at the end of

the evaluation period.3

The goodness-of-fit tests employed include the Likelihood Ratio (LR) test proposed

by Berkowitz (2001). Results are presented at h > 1 using a two degrees-of-freedom

variant (without a test for autocorrelation, see Clements (2004)). For the one-step horizon,

h = 1, we use a three degrees-of-freedom variant with a test for independence, where

under the alternative zτ,h follows an AR(1) process. Since the LR test has a maintained

assumption of normality, we also consider the Anderson-Darling (AD) test for uniformity,

a modification of the Kolmogorov-Smirnov test, intended to give more weight to the

tails (and advocated by Noceti et al. (2003)). We also follow Wallis (2003) and employ a

Pearson chi-squared test which divides the range of the zτ,h into eight equiprobable classes

and tests whether the resulting histogram is uniform. To test independence of the pits,

we use a Ljung-Box (LB1) test, based on autocorrelation coefficients up to four.4 For

h > 1 we test for autocorrelation at lags greater than (h − 1), but less than six, using a

modified LB test (MLB). Even for correctly calibrated densities, we expect autocorrelation

stemming from the overlapping forecast horizons.

3 Component models

Our ensemble forecast densities for inflation use a model space including many VARs and

a (monetary policymaking) DSGE model. In this section, we describe the two types of

model in detail.

3Given the large number of component densities under consideration, we do not allow for parameter
uncertainty when evaluating the pits. Corradi and Swanson (2006) review pits tests computationally
feasible for small N .

4To investigate possible higher order dependence we also undertook tests in the second and third
powers of the pits. Results were similar to the first power.
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3.1 VARs

We consider a range of VAR models in output growth, inflation and the interest rate.

Table 3 in the Appendix describes the Norwegian data sources. Output growth refers to

mainland economy GDP, seasonally adjusted (the total economy excluding the petroleum

sector). We measure inflation with the (headline) consumer price index, adjusted for tax

and energy prices, seasonally adjusted. The interest rate is the three month money rate

(NIBOR).

The VARs are estimated with maximum lag lengths of 1 to 4. For each maximum

lag order, we estimate trivariate VARs, bivariate VARs, and ARs, with inflation always

included. This models space has 16 components in total: 4 ARs, 8 bivariate VARs, and

4 trivariate VARs. (For simplicity, we refer to these models collectively as VARs.) For

each specification, we also transform the variables prior to estimation in two ways: we

include first-differenced VARs (DVARs), and de-trended VARs, giving 48 models in total.

Following Cogley (2002) and others, we use an exponential smoother to extract the trend,

with the smoothing parameter set at 0.05; see also Clark and McCracken (2010).

We utilize a direct forecast methodology (see Marcellino et al. (2003)) to generate

the h-step ahead predictive densities from each Gaussian Linear model. Given our non-

informative priors, the predictive densities for the endogenous variables for each VAR

component are multivariate Student-t; see Zellner (1971), pp. 233-236 and, for a more

recent application, Garratt et al. (2009).

Following Jore et al. (2010) and Garratt et al. (2008), we add to the 48 specifications

described above by adding variants with a single structural break in the conditional mean

and variance, assuming a common break-date in all equations. That is, for each VAR

specification, we estimate a separate VAR for every feasible start date for (in-sample)

estimation from 1980Q1 to 1990Q4. With these additional structural break variants

added to the 48 of full sample VARs, for each recursion in the evaluation period we

consider 1777 component models in total. We shall construct ensembles both with and

without structural breaks variants. We refer to these as “break” and “no break ” VAR

ensembles.

3.2 The DSGE model: NEMO

NEMO is the core model used by Norges Bank for monetary policy. It is a medium-scale

New Keynesian small open economy model with a similar structure to the DSGE models

recently developed in many other central banks, e.g., Sveriges Riksbank (see Adolfson
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et al. (2008)). In this paper, we use a simplified version of the model motivated by

the need to reduce the computational burden of producing the recursive forecasts for

forecast density combination. The simplification involves modifications to the simulation

methodology and the steady-state behavior of the model as described below.

An appendix describes the NEMO economy in detail.5 Here we summarize the main

features. There are two production sectors. Firms in the intermediate goods sector pro-

duce differentiated goods for sale in monopolistically competitive markets at home and

abroad, using labor and capital as inputs. Firms in the perfectly competitive final goods

sector combine domestically produced and imported intermediate goods into an aggre-

gate good that can be used for private consumption, private investment and government

spending. The household sector consists of a continuum of infinitely-lived households that

consume the final good, work and save in domestic and foreign bonds. The model incor-

porates real rigidities in the form of habit persistence in consumption, variable capacity

utilization of capital and investment adjustment costs, and nominal rigidities in the form

of local currency price stickiness and nominal wage stickiness. The model is closed by as-

suming that domestic households pay a debt-elastic premium on the foreign interest rate

when investing in foreign bonds. A permanent technology shock determines the balanced

growth path. The fiscal authority runs a balanced budget each period; and, the central

bank sets the short-term nominal interest rate according to a simple monetary policy rule.

The exogenous foreign variables are assumed to follow autoregressive processes. To solve

the model: we transform the model into a stationary representation, detrending by the

permanent technology shock. Then, we take a first-order approximation (in logs) of the

equilibrium conditions around the stochastic steady state.

Estimation uses data on the three variables used in the VAR specifications, plus the

following seven variables: private consumption, business investment, exports, the real

wage, the real exchange rate, imported inflation, and hours worked. The national accounts

data relate to the mainland economy; that is, the total economy excluding the petroleum

sector. Table 3 in the Appendix describes the data sources. Since the model predicts that

domestic GDP, consumption, investment, exports and the real wage are non-stationary,

these variables are included in first differences. We take the log of the real exchange rate

and hours worked. All variables are demeaned prior to estimation for each recursion.

We estimate the structural parameters using Bayesian techniques.6 The forecast draws

5See Brubakk et al. (2006) for a more thorough discussion of NEMO.
6We carry out DSGE estimation in DYNARE; see Juillard (1996). Karagedikli et al. (2010) provide

a simplified DSGE example with code.
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are based on the mode of the posterior distributions for the structural parameters; the

forecast densities for the DSGE model (like our VARs) do not allow for parameter uncer-

tainty. The structural parameters are re-estimated in each recursion for the evaluation

period. We construct the forecast densities by drawing 10,000 times from a multivariate

normal distribution for the shocks. The standard deviations of the shocks are set equal to

their estimated posterior mode. Note that the (implicit) steady-states vary by recursion

through the evaluation period; we demean the data prior to estimation in each recursion.

The values of the calibrated parameters and the priors for the estimated parameters are

listed in table 4.

The sample used for estimation starts in 1987Q1. This matches the practice used

in Norges Bank monetary policymaking applications and differs from the starting point

for the estimation of our full sample VARs, 1980Q1. In effect, the (constant parameter)

DSGE model uses a (slightly) shorter sample to restrict attention to the (Norwegian)

Great Moderation period. Using a longer sample—to match the assumption in our VAR

specifications without breaks—requires a larger variance for the shock processes to match

the data. Bache et al. (2010) explore the density forecasting performance of this model

with a range of starting points for estimation.

4 Recursive forecasting exercise

Recall that the DSGE model uses 10 observable for estimation and that the VARs include

(up to) three variables. Hence, we conduct a “limited information” analysis of forecasting

performance. Mindful of the Inflation Targeting regime adopted by many central banks,

including Norges Bank, in presenting the results from our forecast analysis, we restrict

our attention to inflation.7

Our recursive forecasting exercise is intended to mimic the behavior of a policymaker

forecasting in real time. The information lags assumed are consistent with the release of

the macro variables concerned. Unfortunately, we are not able to utilize real-time macroe-

conomic data because the data have not been compiled for (most of) the 10 observables

used in DSGE estimation. Instead, we use a single vintage of data available in 2008Q4

for all forecasts and realizations.

The recursive forecast experiments are constructed as follows. We estimate each com-

7The qualitative results for output growth are similar to those for inflation. The interest rate forecast
densities are poorly calibrated even for ensembles with components allowing for breaks, reflecting the
difficulty of predicting interest rates with just three variables.

7



ponent on a sample ending in τ−h and compute model forecasts for inflation for horizons

of h = 1, . . . , 4. We construct (recursive) ensemble predictive densities for τ − h in the

manner described in Section 2 using the weights given in equation (2). Then we extend the

sample by one quarter, re-estimate each component, compute new h-step ahead forecasts

for each model, and produce the ensemble forecast densities. This exercise is repeated

over the evaluation period, τ = 1998Q2 to τ = 2007Q3.

5 Results

As a background to our forecast density evaluations, we remark briefly on the RMSFE

of the two VAR ensembles (with and without breaks), and the DSGE. Earlier studies

have drawn attention to the competitive point forecast performance of DSGEs; see, for

example, Adolfson et al. (2008) and Schorfheide et al. (2009). Using a Diebold-Mariano

test, we could not distinguish the forecasting performance of the break VAR ensemble,

the no break VAR ensemble or the DSGE from an AR(1) benchmark at a 5% significance

level for all forecast horizons, h = 1, . . . , 4. We note, however, that the break ensemble

did produce slightly lower RMSFE.

In Table 1 where there are four panels, one for each h, we turn to the pits tests on the

forecast densities. To facilitate reading, we place the p-values in bold when the density

forecast is correctly calibrated at a 5% significance level—that is, when we cannot reject

the null hypothesis that the densities are correctly calibrated according to the evaluation

test considered.8 The first row of each panel in Table 1 shows that at shorter horizons

(h = 1 and h = 2), the densities from the no break VAR ensemble do not appear to be

well calibrated across the four tests. But at horizons, h = 3 and h = 4, we cannot reject

the null of correct calibration in all cases.

The break VAR ensemble densities, evaluated in the second row of each panel, are

well calibrated at 5% at all 4 horizons. Given our focus on performance of the ensemble,

rather than its components, we do not report confidence intervals for the break dates. But

suffice to say that the break models with the most support typically have a break-date

prior to 1987Q1. Hence, the DSGE sample used for parameter estimation excludes the

most likely, but not all, the candidate break dates (for the VAR model space).

Turning to the DSGE densities, evaluated in the third row of each panel of Table 1,

8To control the joint size of the four evaluation tests requires use of a stricter p-value. The Bonferroni
correction suggests a p-value threshold, for an overall 5% signficance level, of (100% − 95%)/4 = 1.25%
rather than 5% on each test. This gives qualitatively similar findings.
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as with the no break VAR ensemble we see calibration failure for some individual tests

at shorter horizons. The forecast densities are poorly calibrated according to three of the

four pits tests. But, unlike the no break VAR ensemble, calibration is also weak at longer

horizons. Note that, calibration failures occur despite the competitive point forecasting

performance of the DSGE.

The preceding analysis has focused on forecast density evaluation for the break VAR

ensemble, the no break VAR ensemble and the DSGE predictive densities. It is also

instructive to combine the VAR and DSGE candidates to give a VAR-DSGE ensemble.

Following Garratt et al. (2009), the combination of these predictive densities can be

thought of as a “grand ensemble”. In our application, one of the candidates is not an

ensemble—the DSGE predictive density—but the density combination exercise is similar

in spirit to that contained in Garratt et al. (2009).9

Figure 1 plots over time, at each of the four forecasting horizons, the weight on the

DSGE in the VAR-DSGE ensemble in the two cases; that is, when the DSGE is combined

with the break VAR ensemble and the no break VAR ensemble, respectively. Inspection

of these grand ensemble weights indicates that the DSGE densities are competitive at

shorter horizons, h = 1 and h = 2, against the no break VAR ensemble (solid line, top

two panels). The DSGE density receives around 70 percent of the weight for h = 1 at the

start of the evaluation, dropping to less than 20 percent in 2000, before returning non-

monotonically to nearly its early level by the end of the evaluation. The DSGE weight

for h = 2 starts at around 50 percent and declines throughout the evaluation (with some

reversals) to roughly 10 percent.

In contrast, at the same short horizons, the weight on the DSGE in the grand ensemble

with the break VARs is much lower (dashed line). In these cases, the DSGE receives

around 20 percent weight at the start of the evaluation, with the contribution diminishing

as the evaluation period increases. By the end of the evaluation period, the weight on the

DSGE density is approximately zero at both h = 1 and h = 2.

At longer horizons (bottom two panels), h = 3 and h = 4, typically the DSGE density

receives a smaller weight than at shorter horizon, regardless of whether the VAR ensemble

includes break specifications or not. Even in the no break VAR case (solid line), the weight

on the DSGE reaches roughly zero by the midpoint of the evaluation period. Recall that

the no break VAR ensemble had a more satisfactory performance for longer horizons; see

9An extra training window is required to initialize the weights in the VAR-DSGE ensemble. We set
this to 5 + h quarters for the first forecast, and use the training period information in the construction
of the weights throughout our recursive forecasting exercise.
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Table 1.

Table 2 contains the pits tests for the two VAR-DSGE grand ensembles. We note that

both cases, based on combining the DSGE with the no break VAR ensemble (first row,

for each horizon) or on combining the DSGE with the break VAR ensemble (second row,

for each horizon) display good calibration at longer horizons. But, at shorter horizons,

the no break VAR-DSGE ensemble displays calibration failure for one (h = 1) and two

(h = 2) tests—excluding break VAR components matters least at longer horizons.

We emphasize that throughout our analysis we are using the recursive logarithmic score

on the different specifications to construct the forecast densities. An alternative approach

described by Hall and Mitchell (2007) and Geweke (2009) selects the combined predictive

density with the highest average logarithmic score by iterative methods. Given the large

number of models under consideration, this approach is infeasible for construction of

our VAR ensembles. Nevertheless, we checked our findings for our VAR-DSGE grand

ensembles (where there are only two specifications to be combined in each case), and

found the weights to be broadly similar to those reported above.10

6 Conclusions

We draw the following conclusions from our evaluations of the forecast densities for infla-

tion. First, ensemble densities based on component VARs with breaks are well calibrated.

Second, ensembles from VARs without breaks exhibit poor calibration by some tests.

Third, (despite competitive point forecast performance) the DSGE does not match the

performance of break VAR ensembles. And finally, the DSGE receives a higher weight in

the VAR-DSGE grand ensemble if the VAR ensemble does not contain components with

breaks.

Our findings about the forecast density performance of a well-known policymaking

DSGE model will spur further analysis. DSGE models which allow for time variation

offer the scope for better predictive densities. Some recent candidates include Fernandez-

Villaverde and Rubio-Ramirez (2007), and Justiniano and Primiceri (2008). To our knowl-

edge, no central banks have yet adapted these methods for policy use, no doubt deterred

by the computational burden of medium-sized DSGE models with time-varying parameter

distributions. Our VAR-DSGE ensemble approach offers a computationally convenient

methodology for producing well-calibrated forecast densities using a more conventional

10In two cases, at h = 3 and h = 4, the DSGE received slightly less weight than shown in Figure 1
throughout the evaluation.
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log-linearized policymaking DSGE model. Although we emphasize that the break VAR

ensemble performed well in our forecasting exercise without the benefit of the DSGE. In

future work, we intend to investigate the suggestion in Bache et al. (2010) that ensem-

ble combinations of many DSGE models can approximate non-Gaussian data generating

processes. That research agenda offers the prospect of well-calibrated forecast densities

from more structural components at a relatively low computational cost.
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Figure 1: Weights on the DSGE in VAR-DSGE grand ensembles, by horizon h
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Table 1: Density forecast evaluation of VAR ensemble and DSGE using pits

h = 1 LR3 AD χ2 LB1
no break VAR ensemble 0.03 0.32 0.17 0.40
break VAR ensemble 0.38 0.49 0.17 0.54
DSGE 0.00 0.04 0.09 0.02

h = 2 LR2 AD χ2 MLB
no break VAR ensemble 0.01 0.16 0.03 0.51
break VAR ensemble 0.40 0.33 0.17 0.80
DSGE 0.00 0.00 0.00 0.99

h = 3 LR2 AD χ2 MLB
no break VAR ensemble 0.28 0.70 0.11 0.83
break VAR ensemble 0.32 0.25 0.59 0.71
DSGE 0.00 0.00 0.00 0.96

h = 4 LR2 AD χ2 MLB
no break VAR ensemble 0.45 0.85 0.71 0.15
break VAR ensemble 0.10 0.09 0.34 0.64
DSGE 0.00 0.00 0.00 0.97

Notes: LR2 is the p-value for the Likelihood Ratio test of
zero mean and unit variance of the inverse normal cumula-
tive distribution function transformed pits, with a maintained
assumption of normality for the transformed pits; LR3 sup-
plements LR2 with a test for zero first order autocorrelation.
AD is the p-value for the Anderson-Darling test statistic for
uniformity of the pits, with the small-sample (simulated) p-
values computed assuming independence of the pits. χ2 is the
p-value for the Pearson chi-squared test of uniformity of the
pits histogram in eight equiprobable classes. LB is the p-value
from a Ljung-Box test for independence of the pits; MLB is a
modified LB test which tests for independence at lags greater
than or equal to h
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Table 2: Density forecast evaluation of the VAR-DSGE ensembles using pits

h = 1 LR3 AD χ2 LB1
no break VAR-DSGE 0.02 0.27 0.29 0.48
break VAR-DSGE 0.30 0.42 0.26 0.46

h = 2 LR2 AD χ2 MLB
no break VAR-DSGE 0.01 0.10 0.01 0.64
break VAR-DSGE 0.35 0.28 0.54 0.75

h = 3 LR2 AD χ2 MLB
no break VAR-DSGE 0.26 0.66 0.26 0.29
break VAR-DSGE 0.27 0.22 0.65 0.64

h = 4 LR2 AD χ2 MLB
no break VAR-DSGE 0.25 0.56 0.95 0.21
break VAR-DSGE 0.10 0.07 0.22 0.57

Notes: the no break VAR-DSGE refers to the grand
ensemble of the no break VAR ensemble with the DSGE;
the break VAR-DSGE refers to the grand ensemble of
the break VAR ensemble with the DSGE. Also see notes
to Table 1.
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Appendix: Structure of NEMO DSGE model

Final goods sector The perfectly competitive final goods sector consists of a contin-

uum of final good producers indexed by x ∈ [0, 1] that aggregates domestic intermediate

goods, Q, and imports, M , using a CES technology:

At(x) =
[
η

1
µQt(x)

1− 1
µ + (1− η)

1
µ Mt(x)

1− 1
µ

] µ
µ−1

, (3)

The degree of substitutability between the composite domestic and imported goods is

determined by the parameter µ > 0, whereas η (0 ≤ η ≤ 1) measures the steady-state

share of domestic intermediates in the final good for the case where relative prices are

equal to 1. The composite good Q(x) is an index of differentiated domestic intermediate

goods, produced by a continuum of firms h ∈ [0, 1]:

Qt(x) =

 1∫
0

Qt (h, x)
1− 1

θt dh


θt
θt−1

, (4)

where the degree of substitution between domestic intermediate goods, θt, evolves ac-

cording to AR(1) process with autoregressive parameter λθ and standard deviation σθ.

Similarly, the composite imported good is a CES aggregate of differentiated import goods

indexed f ∈ [0, 1]:

Mt(x) =

 1
θ∗

1∫
0

Mt (f, x)
1− 1

θ∗ df


θ∗
θ∗−1

, (5)

where θ∗ is the degree of substitution between imported goods.

Intermediate goods sector Each intermediate firm h is assumed to produce a dif-

ferentiated good Tt (h) for sale in domestic and foreign markets using a CES production

function:

Tt (h) =
[
(1− α)

1
ξ
(
Ztz

L
t lt (h)

)1− 1
ξ + α

1
ξKt (h)

1− 1
ξ

] ξ
ξ−1

, (6)

where α ∈ [0, 1] is the capital share and ξ denotes the elasticity of substitution between

labor and capital. The variables lt (h) and Kt (h) denote, respectively, hours used and

effective capital of firm h in period t. There are two exogenous shocks to productivity

in the model: Zt refers to an exogenous permanent (level) technology process, which
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grows at the gross rate πzt and evolves according to an AR(1) process with autoregressive

parameter λz and standard deviation σz, whereas zLt denotes a temporary (stationary)

shock to productivity (or labor utilization) which evolves according to an AR(1) process

with autoregressive parameter λL and standard deviation σL. The variable Kt (h) is

defined as firm h’s capital stock that is chosen in period t and becomes productive in

period t+ 1. Firm h’s effective capital in period t is related to the capital stock that was

chosen in period t− 1 by

Kt (h) = ut (h)Kt−1 (h) , (7)

where ut (h) is the endogenous rate of capital utilization. Adjusting the utilization incurs

a cost of γut (h) units of final goods per unit of capital. The cost function is

γut (h) = φu1
(
eφ

u2 (ut(h)−1) − 1
)
, (8)

where φu1 and φu2 are parameters determining the cost of deviating from the steady state

utilization rate (normalized to one). Firm h’s law of motion for physical capital reads:

Kt (h) = (1− δ)Kt−1 (h) + κt (h)Kt−1 (h) , (9)

where δ ∈ [0, 1] is the rate of depreciation and κt (h) denotes capital adjustment costs.

The latter takes the following form:

κt (h) =
It (h)

Kt−1 (h)
− φI1

2

[(
It (h)

Kt−1 (h)
− I

K

)]2

−φ
I
2

2

(
It (h)

Kt−1 (h)
− It−1

Kt−2

)2

+ zIt , (10)

where It denotes investment and zIt is an AR(1) investment shock with autoregressive

parameter λI and standard deviation σI . The labor input is a CES aggregate of hours

supplied by the different households:

lt(h) =

 1∫
0

lt(h, j)
1− 1

ψt dj


ψt
ψt−1

, (11)

where ψt is an AR(1) process governing the elasticity of substitution between different

types of labor with autoregressive parameter λψ and standard deviation σψ. Firms sell
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their goods in markets characterised by monopolistic competition. International goods

markets are segmented and firms set prices in the local currency of the buyer. An indi-

vidual firm h charges PQ
t (h) in the home market and PM∗

t (h) abroad, where the latter is

denoted in foreign currency. The quantity sold in domestic markets is denoted Qt(h) and

exports are denoted M∗
t (h). Nominal price stickiness is modelled by assuming that firms

face quadratic costs of adjusting prices,

γP
Q

t (h) ≡ φQ

2

[
PQ
t (h)

πPQ
t−1(h)

− 1

]2

+
φQ2
2

[
PQ
t (h) /PQ

t−1 (h)

PQ
t−1/P

Q
t−2

− 1

]2

and (12)

γP
M∗

t (h) ≡ φM
∗

2

[
PM∗
t (h)

πPM∗
t−1 (h)

− 1

]
+
φM

∗

2

[
PM∗
t (h) /PM∗

t−1 (h)

PM∗
t−1/P

M∗
t−2

− 1

]2

, (13)

in the domestic and foreign market, respectively, where π is the steady-state inflation

rate. Firms choose hours, capital, investment, the utilization rate and prices to maximize

present discounted value of cash-flows, adjusted for the intangible cost of changing prices,

taking into account the law of motion for capital, and demand both at home and abroad.

The foreign intermediate goods sector is modelled symmetrically. The output gap and

marginal costs in the foreign economy are modelled as AR(1) processes with autoregressive

parameters λy
∗

and λmc
∗

and standard deviations σy∗ and σmc∗ ,respectively.

Households The economy is inhabited by a continuum of infinitely-lived households

indexed by j ∈ [0, 1]. The lifetime expected utility of household j is:

Ut (j) = Et

∞∑
i=0

βi [u (Ct+i (j))− v (lt+i (j))] , (14)

where C denotes consumption, l is hours worked and β is the discount factor 0 < β < 1.

The current period utility functions, u(Ct(j)) and v(lt(j)), are

u (Ct (j)) = (1− bc/πz) ln

[
(Ct (j)− bcCt−1)

1− bc/πz

]
, (15)

and

v (lt (j)) =
1

1 + ζ
lt (j)

1+ζ . (16)
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where ζ > 0, bc (0 < bc < 1) governs the degree of habit persistence and πz denotes the

steady-state growth rate in the economy. Each household is the monopolistic supplier of

a differentiated labor input and sets the nominal wage subject to the labor demand of

intermediate goods firms and subject to quadratic costs of adjustment, γW :

γWt (j) ≡ φW

2

[
Wt (j)

πwWt−1 (j)
− 1

]2

+
φW2
2

[
Wt (j) /Wt−1 (j)

Wt−1/Wt−2

− 1

]2

(17)

where Wt is the nominal wage rate and πw is the steady-state growth rate of nominal

wages. The individual flow budget constraint for agent j is:

PtCt (j) + StB
∗
H,t (j) +Bt (j) ≤ Wt (j) lt (j)

[
1− γWt (j)

]
+

[
1− γB

∗

t−1

] (
1 + r∗t−1

)
StB

∗
H,t−1 (j) (18)

+ (1 + rt−1)Bt−1 (j) +DIVt (j)− TAXt (j) ,

where St is the nominal exchange rate, Bt (j) and B∗H,t (j) are household j’s end of period

t holdings of domestic and foreign bonds, respectively. Only the latter are traded interna-

tionally. The domestic short-term nominal interest rate is denoted by rt, and the nominal

return on foreign bonds is r∗t . The variable DIV includes all profits from intermediate

goods firms and nominal wage adjustment costs, which are rebated in a lump-sum fash-

ion. Home agents pay lump-sum net taxes, TAXt, denominated in home currency. The

financial intermediation cost takes the following form:

γB
∗

t = φB1
exp

(
φB2

(
StBH

∗
t

PtZt

))
− 1

exp
(
φB2

(
StBH

∗
t

PtZt

))
+ 1

+ zBt , (19)

where 0 ≤ φB1 ≤ 1 and φB2 > 0 and where the ‘risk premium’, zBt , is assumed to follow

an AR(1) process with autoregressive parameter λB and standard deviation σB.

Government The government purchases final goods financed through a lump-sum tax.

Real government spending (adjusted for productivity), gt ≡ Gt/Zt, is modelled as an

AR(1) process with autoregressive parameter λg and standard deviation σg. The central

bank sets the interest rate according to a simple instrument rule, which in its log-linearised

version takes the form:
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rt = ωrrt−1 + (1− ωr)

[
ωππt−1 + ωyŷt−1 + ωrerrert−1

+ω∆π (πt−1 − πt−2) + ω∆y∆ŷt−1

]
+ zrt (20)

where πt is the aggregate inflation rate, rert is the (log) real exchange rate and zrt is a

mean-zero monetary policy shock with standard deviation σr. The parameter ωr ∈ [0, 1〉
determines the degree of interest rate smoothing. The output gap ŷt is measured as the

percentage deviation of gross domestic product Yt from the stochastic productivity trend.

The remaining variables are in deviation from their steady-state levels.
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Table 3: Variable definitions and sources
Observables Description Source

Yt GDP mainland Norway, per capita, s.a. Statistics Norway

Ct Private consumption, per capita, s.a. Statistics Norway

It Business investment, per capita, s.a. Statistics Norway

M∗
t Exports mainland Norway, per capita, s.a. Statistics Norway

Wt/P t Hourly wage income divided by private consumption deflator, s.a. Statistics Norway

rert Import-weighted real exchange rate (I-44) Norges Bank

πt Overall inflation adjusted for taxes and excl. energy prices (CPI-ATE), s.a. Statistics Norway

πmt Imported inflation adjusted for taxes and excl. energy prices, s.a. Statistics Norway

rt 3-month money market rate (NIBOR) Norges Bank

lt Total hours worked, per capita, s.a. Statistics Norway

Table 4: Calibrated parameter values and prior distributions

Calibrated parameters Value Estimated parameters Prior Estimated parameters Prior

Type Mean (std) Type Mean (std)

θ 6.0000 α Beta 0.3000 (0.020) σz Inv gam 0.0050 (Inf)

θ∗ 6.0000 ψ Inv gam 5.5000(0.500) σr Inv gam 0.0025 (Inf)

πz 1.0056 ζ Inv gam 3.0000 (0.200) σψ Inv gam 1.0000 (Inf)

β 0.9993 µ Inv gam 1.1000 (0.200) σθ Inv gam 1.0000 (Inf)

φI1 1.0000 µ∗ Inv gam 1.1000 (0.200) σI Inv gam 1.0000 (Inf)

φB1
1.0000 bC Beta 0.7500 (0.050) σL Inv gam 0.0050 (Inf)

δ 0.0180 φM Inv gam 1.0000 (1.000) σB Inv gam 0.0100 (Inf)

η 0.6444 φM2 Inv gam 1.0000 (1.000) σmc∗ Inv gam 0.0100 (Inf)

ξ 0.7000 φQ Inv gam 1.0000 (1.000) σy∗ Inv gam 0.0100 (Inf)

φU1 1.0000 φQ2 Inv gam 1.0000(1.000) σg Inv gam 0.0100 (Inf)

φM
∗

0.5000 φW Inv gam 1.0000 (1.000) λz Beta 0.8500 (0.1)

φM
∗

2 0.0000 φW2 Inv gam 1.0000 (1.000) λψ Beta 0.8500 (0.1)

φI2 Gam 10.0000 (5.000) λθ Beta 0.8500 (0.1)

φB2 Inv gam 0.0200 (0.005) λI Beta 0.8500 (0.1)

φU2 Inv.gam 0.5000 (0.020) λL Beta 0.8500 (0.1)

ωr Beta 0.8000 (0.050) λB Beta 0.8500 (0.1)

ωπ Inv.gam 2.0000 (0.100) λmc
∗

Beta 0.8500 (0.1)

ωy Normal 0.2000 (0.050) λy
∗

Beta 0.8500 (0.1)

ωrer Normal 0.0000 (0.050) λg Beta 0.8500 (0.1)

ω∆y Normal 0.0000 (0.050)

ω∆π Normal 0.0000 (0.050)

24




