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Abstract

Dynamic equilibrium models are specified to track time series with unit root-like behavior. Thus,
unit roots are typically introduced and the optimality conditions adjusted. This step requires tedious
algebra and often leads to algebraic mistakes, especially in models with several unit roots. We propose
a symbolic algorithm that simplifies the step of rendering non-stationary models stationary. It is easy
to implement and works when trends are stochastic or deterministic, exogenous or endogenous. Three
examples illustrate the mechanics and the properties of the approach. A comparison with existing
methods is provided.
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1 Introduction

Dynamic Stochastic General Equilibrium (DSGE) models are popular in academic and policy institutions
and used for a variety of purposes: informally matching stylized facts present in the data, structural esti-
mation, scenario analyses, and forecasting. Often these models just consider stationary disturbances and
a standard production structure with constant returns to scale, making the output a vector of stationary
time series. When this is the case, one has to choose how to compare the model to data displaying near
non-stationary behavior and how to design estimation and inferential procedures which can cope with the
mismatch (see e.g. Canova (2014)).

Alternatively, one could assume that some of the disturbances are non-stationary, for example, assume
permanent shocks to total factor productivity. In this case, a balanced growth path must be found
prior to the computation of the solution and the optimality conditions transformed so that a stationary
equilibrium exits. Standard solution procedures such as Blanchard and Kahn (1980), Klein (2000) or
Sims (2010), in fact, work under the assumption that the variables entering the optimality conditions are
stationary. Manually performing the stationarization step is cumbersome, it involves tedious algebra and,
more importantly, it is prone to mistakes, especially in medium or large scale models featuring a number
of non-stationary disturbances.

This paper presents a fast and easy-to-implement algorithm that mechanically performs the stationar-
ization step in models featuring unit roots or deterministic trends, when the sources of the trends are
exogenous or endogenous, such as in Comin and Gertler (2006). Because the approach is symbolic, the
cost of computations is trivial. Thus a researcher may explore the consequences of alternative assumptions
regarding the location of the unit roots (preferences, technologies, policy shocks), examine the equations
that are affected, and the implications they have for the observable variables. Such an exercise allows
one to improve the specification and the empirical content by confronting the long run implications of the
model and of the data systematically.

The output of the algorithm consists of a system of equations containing the stationary version of the
original non-stationary model, and it can be written to a text file or exported to LaTeX. The user can
thus check that the solution makes sense and then perform a standard dynamic analysis. The algorithm
is contained in a package of routines, called NB toolbox (Paulsen (2021)), which also has a number of
ready-built functions a researcher can employ for standard dynamic analysis. Given that the stationary
model can be written to a text file, the output of the algorithm can also be used as an input in other
toolboxes, such as DYNARE, Dynare (2021); IRIS, GPMN (2020); or RISE, Maih (2021), for filtering or
estimation, if the user wishes to do so.

IRIS and DYNARE have the capability to deal with non-stationary disturbances in dynamic models.

Our approach is more general than both. The first toolbox uses a numerical approach to perform the



stationarization step. Thus, the solution features approximation errors. In addition, the user needs to
provide the balanced growth path for the approximation to be performed. The second toolbox needs the
user to provide both the growth factors and the variables which are associated with the growth factors.
In addition, at the moment, it can handle only exogenous unit root processes.

The rest of the paper is organized as follows. The next section describes the problem to be solved. The
algorithm is in Section 3. Section 4 presents the syntax of the model file and the commands. Section
5 has examples. In Section 5.1 we consider a RBC model driven by non-stationary labor augmenting
technology shocks. We stationarize the model manually (Section 5.1.1); with our algorithm (Section 5.1.2)
and compare the two solutions. In Section 5.2 we repeat the exercise for a larger-scale model with unit
root in the labor-augmenting and the investment-specific technologies, as in Justiniano et al. (2011)). We
compare its long run properties to those of a model where unit roots appear in the production technology
and in preferences. Section 5.3 considers a model with endogenous growth and compares manual and
automatic solutions. Section 6 discusses the relationship between our approach and existing methods.
Section 7 concludes. A number of on-line appendices contain the details and the files mentioned in the

text.

2 The problem

The optimality conditions of a DSGE model can be written as:
Et[F(Xt—i-l’XtaXt—lvAtht—laUtae)] - 07 (1)

where F'(.) is a M x 1 vector of continuous non-linear functions, and X; is a M x 1 vector of endogenous
variables, with the convention that the first R variables are non-stationary, and the remaining M-R are
stationary, and Uy is a N x 1 vector of stationary exogenous forcing variables. A; is a @ x 1 vector of
non-stationary forcing variables which, for the sake of the presentation, are assumed to enter without
leads, even though this is not a limitation of the approach, as leads can always be considered by extending
the vector A;. A; may be exogenous or endogenous and, in this latter case, may depend on a subset of
Ui, 0 and X;. Finally, 0 is a p x 1 vector of structural parameters.

The presence of the A; in (1) rules out the possibility of using standard perturbation methods to solve
the problem, since the Blanchard and Kahn condition fails. However, if the problem has a stationary
HZ(A) Vi € [1, R] and
the M-R stationary variables as Z; = X}, Vi € [R+ 1, M], and proceed in the standard way. Here H*

representation, we can redefine the R endogenous non-stationary variables as Z; =

are continuous differentiable functions of A; and represents the balanced growth path of the model. Let

i Hi(A) Xi_
AZt:ﬁ [1,R] and A4, = A L= 1.

Rather than ﬁndlng the H(A;) functions, Wthh is comphcated when R is large, it is easier to compute

the functions G* satisfying G*(log(AZ;),log(AA;)) = 0,Vi € [1, R]. These functions also characterize the




balanced growth path and are obtained with a set of restrictions, stated in Section 3.1. If we let

Zy
Y;f = AZt ) (2)
AA;

a stationary representation of the optimality conditions of the model is
B[P (Yer1,Ys, Yio1, U, 0)] = 0, (3)

where F() is a function representing the non-linear equations, and Y; has dimension M + R + Q). Note
that AZ; and AA; belong to a block exogenous system when A; is exogenous.
In words, our algorithm creates the Y; from any set of (X, A¢,U;), and transforms (1) into (3). To

perform the transformation one needs four steps:

1. Find the restrictions holding in the balanced growth path.
2. Identify the R non-stationary variables.
3. Compute the functions G, Vi € [1, R].

4. Rewrite (1) into (3).

Clearly, trends must be properly placed for the procedure to succeed, as the restrictions obtained from
the first step need not be consistent with balanced growth. For example, it is well know that, with a
unit root in government expenditure, there are no restrictions on preferences and technologies producing

balanced growth in a standard real business cycle (RBC) model.

3 The algorithm

This section describes the algorithm that automatizes the four steps outlined in Section 2.

3.1 Finding the restrictions holding in the balanced growth

One method to quickly identify which variables are non-stationary is to find the set of restrictions that

must hold to rewrite the model in a stationary form. These restrictions are generically given by:

K(X5,A%,0) =0, (4)

887 887

where X2 = log(X)t(jl) and AP = log(A’?jl), and X% and A2 are the values along the balanced growth
path. Here the function K represents a vector of L linear restrictions. In general, L > M. Let 6, and

04 be two parameters, h and g two generic functions and ™ a function formed using h &+ g. Let ¢ and



v be functions obtained applying the rules described below to h and g, respectively. We can find the
restrictions given by K, by applying the following rules to the equations of (1) by forward accumulation,

and eliminating all duplicated restrictions .

Equal (=)

o If X, = Y., then X4 = Y24,
o If X, = h(Yss, Zss), then X2 = (YA

88

Z5).
o If X3 = h* (Yis, Zss), then X5 = (Y4

88

Z5) and X4 = v(Y4

88

Z5).
o If h(Yss, Zss) = 0, then c(Y2

88

Z5) =0.

To understand the meaning of these restrictions, note that the first one states that if a model has an
equation of the form X 5 = Y, Xss and Y, need to grow at the same rate along the balanced growth
path. Similarly, the second restriction forces the two sides of the equation to have the same growth
rate. The third expression consists of two terms; Xss = h(Yss, Zss) £ 9(Yss, Zss) and forces them to
grow at the same rate along the balanced growth path. The last condition requires h(Yss, Zss) to

display no growth, as 6, is a constant. The logic of the next expressions are similar:
Plus/Minus (+)

o If X, £ Y, then X4 = Y4,
o If X, + Y & Zy, then X5 = YA and X2 = Z54.
If X5 & h(Yss, Zss), then X5 = (Y4

88

Z5).

If X5 & ht(Yis, Zss), then X5 = (Y,

Z5) and X4 = v(Y4

887

Z5).

If h(Yss, Zss) 0, then g(Y5

88

Z5) =0.

If 0, = 04, then 0, + 0.

The last rule allows us to keep track of parameters. Since a parameter is an object of an equation,
we need to ensure that, when applying the relevant operators, they are properly accounted for.
Times (*)
o If XY, then X2 + Y2,
o If X Vi Zss, then X5 + YA + Z5.
o If X, h(Yys, Zss), then Xgg + c(YE

88

Z%).

n a forward accumulation exercise, one first fixes the independent variable with respect to which the scaling is performed
and then computes the trend of each sub-expression recursively.



o If X, ,h*(Yys, Zss), then ¢(YE

88

Z58) =v(Y4

88

Z5) and X4 + (Y4

88

zZ%).
o If X0, then XZ.
o If 0,0, then 0, - 0.

The last two rules imply that multiplying Xss by a parameter leaves its growth rate unchanged, and

that parameters do not grow.

Divide (/)

Xss A A
o It $2=, then X — Y.
Xss

o 1 35 then X5 -YL 275

Zss ELN

If == then X2 — YA + Z4.

Y.
3=y

If %, then C(Yg%,ZSAS) = U(YA

583488 887

Z5) and X2 — c(Y4

88

Z5).

o If %=, then X3.
o If % then %.
Power (")

o If (X4)% then 6, x X5
o If 02,/55, then Y2 =0, i.e. Y; must be stationary.

o 1f 0P %) then (YA

88

Z58) =0, i.e. h(Y;, Z;) must be a stationary.

o If 094 then 69,
Expression of the form (Xs)¥ss or (Xss)h(YSS’ZSS) are not supported. This is because, for example,
the first expression leads to a combination of two restrictions Y2 = 0 and Y, X2 that prevent us

from solving for the balanced growth path separately from the stationary steady state, as Y55 appears

in the system in (4). Situations of this type however are rare in the current wave of DSGEs.
Exponential (exp)
o If eXss then X2 =0, i.e. X; must be stationary.

o If "(YssrZss) then (YA

88

Z8) =0, i.e. h(Yss, Zss) must be a stationary.

o If % then e .
Natural logarithm (log)

e If log(Xss) then XSAS =0, i.e. Xy must be stationary.



o If log (h(Yss, Zss)) then (Y4

CE

Z5) =0, i.e. h(Yys, Zss) must be stationary.

e If log(6,) then log(6),).

Example To illustrate how the rules work, suppose we want to find the restrictions provided by:
X x Yy + 2] = Q. (5)

Define steady state auxiliary variables as follows:

Xss X }fss + Zg; - st
= (w1 X wa) + wgl — Wy (6)

= Wy + We — Wy = Wy.

where ws = wy X we and wg = wgl. Let w be the operator obtained applying the above rules. The forward

accumulation step consists of the followings:
1. w1 = X leads to wy = XSAS
2. wy = Yy leads to wqy = Ysé
3. w3 = Zss leads to w3 = ZSAS
4. wy = Qss leads to wy = Qﬁ;
5. ws = wy X wo leads to ws = w1 + we
6. wg = wgl leads to wg = 0113
7. wy = w5 + wg — wy leads to Wy = wg and ws = Wy

To apply the rules, we need an initial condition. Since w; = Xgg, no rules applies, and we must normalize

by creating a seed. We set 1 = X2

887

i.e. applying the dot operator to X, gives its growth rate. Then:
1. 15 = g gives Wy + g = Otz or, X2 + YA = 0,75,
2. 5 = 1y gives Wy + g = 1y or X+ YE = Q4.

Applying the above rules to all the equations present in a model give us Lq restrictions.



3.2 Identify the non-stationary variables

To the L restrictions found in the last section, we add Lo equations of the form A5, = v; that is, Ay
has a drift equal to . This allows the identification of the non-stationary variables without knowing the
features of the forcing process A;, which is necessary when the unit root is endogenous. In the end, we

have L = Ly + Lo constraints. This produces a system of equations linear in X5 and A%, that is:

XA X A XA
co =" <7 [l =B "
This system can be solved if rank(C(0)) = M + Q. In some cases a solution can be found even when
rank(C(0)) < M + @, in which case some of the endogenous variables are unrestricted. To allow for this
possibility, we constrain all unrestricted endogenous variables to have no growth in steady state; that is
for any X! in this group; we set (X')% = 0. If a solution to (7) exists, it gives us the balanced growth

path for each value of v. We use this solution to identify the R non-stationary variables.

3.3 Obtaining the G’ functions

From (7) it is also possible to identify the variables dependent on G* functions. Let C'() be the matrix

consisting of the columns corresponding to the R non-stationary variables in [CX(0) C“4(0)]. Generally,

the number of rows of (C'(f)) > R, and thus have more equations than non-stationary variables. Applying

Gaussian elimination to the rows of C'(0)’, produces the row echelon form:

(Q)echelon C(e)ec]i%elon

k) 17

Cc

C(@)echelon _ (8)

0 c(f)sshelon
0 0

o O O

During the process, we record the first R linearly independent columns of C’(G)’ . Since the columns of
C’(G)’ represent a function, we can use this index to select the R linearly independent equations in R

non-stationary endogenous variables. This gives the required G* functions.

3.4 Representing the stationary system

After recording the non-stationary variables, we “divide through” the optimality conditions. Noticing that

_ Xin i i i Xia _ Xia Al oA AL AL V-1
= X{ A2, Zia = miay = Az oar = A g = L = (A4))T, we can

l%+1 T Hi(Aw)
substitute X}, with X, ,AZ{, , Xi_| with %ﬁ Ab | with AAL Al with Tand A, with (AA?)™L,
whenever they appear. These equations together with the G* functions will give us (3).




4 The model file language

In order to run the algorithm with the NB toolbox, one needs to write the equations of the model to a
file with .nb (or .mod) extension. The file consists of six blocks, describing the endogenous and exogenous

variables, the parameters, the model, the unit root processes and what to report.

endogenous
A list of the endogenous variables. They may appear with lags and leads in the model, but a

maximum of one lead is imposed. Variables are separated by a space or starting a new line.

unitrootvars
A list of the variables that generate non-stationary dynamics. They can have lags and leads, but a

maximum of one lead is imposed. Variables are separated by a space or starting a new line.

exogenous
A list of the exogenous variables. They cannot have lags or leads and are assumed to be white noise

with unit standard deviation. Variables are separated by a space or stating a new line.

parameters
A list of the parameters. This is block is optional, as one could write parameter values directly into

the equations. Parameters are separated by a space or starting a new line.

model
A list of the equations. Fach equation must end with a semicolon and may span more than one line.
It must be typed-in using the endogenous and the exogenous variable names, and the parameter

names or numbers (hard-coded parameters). For lead or lags use varName(+1) and varName(-1).

reporting
A list of the variables to be reported. For example, although the consumption share does not appear
in a model, one may want to compute its response function to shocks or other summary statistics.
The reporting command allows to set variables which do not appear directly in the model. The
expression consists of the endogenous variables and/or the parameters and any MATLAB (or owned
MATLAB) function that acts on a double vector, and returns an output of the same dimension as
the input. Each equation must start with a variable name, there should be an equal sign followed

by an expression, and it must end with a semicolon; for example, cy = c/y; or c¢sx = cumsum(x).

Note that the specification of processes of A; must be included in the model declaration block in its
non-stationary form. If A; does not depend on the exogenous forcing variables, there is a deterministic

trend in the model; otherwise a stochastic trend is assumed. The processes for A; may also depend on the



endogenous variables. This way, the model language accommodates many different assumption about the
drivers of the trend. If no unitrootvars command is used in the file, the toolbox assumes that all the
shocks are stationary and solves the model with standard tools.

A number handy functions may be used to simplify in the model file declaration. For example, steady state(M)
returns the steady state of the variable M and bgp(M) returns its growth rate along the balanced growth
path. Both these functions are used in the example in Section 5.2. The algorithm is implemented as an

object oriented MATLAB code. A description of how the algorithm works is in the Appendix A.

5 Examples

To show that the algorithm is easy to use and produces reliable results, we consider three models. The first
is a real business cycle (RBC) model with a unit root in labor augmenting productivity; the second is a
version of the larger-scale New Keynesian (NK) model of Justiniano et al. (2011) with multiple unit roots;

the third is a closed economy model with R&D generated endogenous labor augmenting productivity.

5.1 A RBC model

There is exogenous labor supply, endogenous capital accumulation, and ¢ is the capital depreciation rate.

Production is Cobb-Douglas in capital and labor, and the labor augmenting term A; is a unit root:
log(Aar) = (1 — N)log(g) + NMog(Aai—1) + uy. (9)

where Aa; = A;/As_1, g is the long-run mean, ) is a persistence parameter, and u ~ iid(0, 02). Preferences
are logarithmic in consumption and agents discount the future at the rate 8. The details of the model
and the optimality conditions are in the Appendix B. We first show how to solve the model manually, and

then implement the algorithm we propose.

5.1.1 Using a manual approach

Steps 1-8: Finding the balanced growth path; the non-stationary variables and the G* functions.
With only one shock, output, investment, consumption, and capital all grow at the rate log(g). To verify

the guess, we apply the rules of Section 3.1. The production function gives
Yo =v(AQ + Lo) + (1 - KL (10)
where 7 is a share parameter. The capital accumulation equation and the resource constraint give:
K& =14, (11)
Yo =0a (12)

10



A
Yo =15 (13)
The Euler equation and the definition of the real rate give:
r2 =0, (14)
e =YE - K (15)
Finally, because labor supply is inelastic, it must be the case that
LY =0. (16)

These equations imply:
Ch=T2=K5%=Y% = A% = log(y), (17)

Hence, for these five variables H'(A4;) = A;, and equations (10)-(13), (15) (16) determine the G? functions.

Step 4: The stationary system
For any M;, let my = % be its stationary version, and Amy; = exp(MP) = #ﬁfﬂ) its growth rate.

The equations of the stationary system are:

ke 1\
g = L] (“) . (18)

Production function:

Capital accumulation equation:

ki = (1—5)1224—%, (19)

Market clearing condition:
Yt = ¢+ iy, (20)

Euler equation:
PlowiBen] _ g0 10y, (21)
Ct

Definition of the real rate:

(1 -y BByl _ 5 (22)

ki
(21), (18), (19) (20) determine the steady state of the stationary system:

Tes = % ~1. (23)

Koo (1=)
Yss = (g) ) (24)
iss = <1 - 1;5> ks& (25)

11



Css = Yss — bss, and (26)

Moreover, using (24) into (22) we get

b r+0 (=) o7
w= (1) e 1)

The steady state for the five unknowns is the solution to these five equations.

To compute the linear approximation to the solution of the stationary system around the steady state,
one can employ standard package such as DYNARE (Dynare (2021)), GENSYS (Sims (2010)) or the NB
toolbox (Paulsen (2021)). With the linear approximate solution, interesting statistics such as impulse

responses, variance or historical decompositions can be easily computed.

5.1.2 Using the automatic approach

Rather than proceeding manually, we write the equations of the non-stationary model to a file and let a

software take care of the rest. The file is as follows:

endogenous

cdiiklry

exogenous

u

unitrootvars

A

parameters

beta delta g gamma lambda std_u

model
c(+1)/c = betax(1l + r);
1 =1;
y = (Axl) - gamma * k(-1)"(l-gamma);
(1-gamma)*y(+1)/k = r + delta;
k = (1-delta)*k(-1) + i;
y =c + 1i;
dA = A/AC-1);
A/AC-1) = g~ (1-lambda)*(A(-1)/A(-2)) ~lambda*exp(std_uxu) ;

12



reporting

A = exp(cumsum(log(dd) - log(steady_state(dA)))); % level variables

C = cx*A; I = ix*4; K = k*4; Y = y*A;

c_log_dev = exp(log(c) - log(steady_state(c))); % deviations from steady state
i_log_dev = exp(log(i) - log(steady_state(i)));

k_log_dev = exp(log(k) - log(steady_state(k)));

r_dev = r - steady_state(r);

y_log_dev = exp(log(y) - log(steady_state(y)));

With this file (saved as non_stationary.nb), the NB commands needed to stationarize the system and to

compute impulse responses:

modelNS = nb_dsge('nb_file', 'non_stationary.nb'); %Read the model file

modelNS = set (modelNS, 'name', 'Stationarize automatically'); % Name it
param = struct( ); % Assign parameter values

param.g = 1.03; param.gamma = 0.60; param.delta = 0.10;
param.beta = 0.97; param.lambda = 0; param.std_u = 0.01;
modelNS = assignParameters (modelNS, param) ;

% Find the balanced growth path, (steps 1-3 of the algorithm):
modelNS = solveBalancedGrowthPath (modelNS) ;

% Make the model stationary (step 4 of the algorithm) :
modelNS = stationarize (modelNS)
% Find the steady state and return it as a cell matrix:
modelNS = checkSteadyState (modelNS, ...
'solver', 'fsolve', ...
'steady_state_solve', true, ...
'steady_state_default', @ones);
ss = getSteadyState (modelNS)
% Return the balanced growth path solution as a cell matrix:
bgp = getBalancedGrowthPath (modelNS)

Obtain the linear solution: y(t) = A y(t-1) + B eps(t)
and compute impulse responses
modelNS = solve (modelNS) ;

o
)
o
©

% Compute and plot impulse responses
% Note modelS object represents the model stationarized manually.
[irfs,~,plotter] = irf ([modelNS,modelS], ...
'variables', [modelNS.dependent.name (1:7),modelNS.reporting(:,1)"], ...
'settings', {'legBox"', 'off', 'legFontSize"',18, 'subPlotSize"', [4,3], ...
'figureTitle', false});
nb_graphInfoStructGUI (plotter)

13



The stationary model file produced by these commands is in Appendix B. If a user wants to save the

stationary model for later purposes or to use in other packages, it is possible to write it to a file using:

writeModel2File (modelNS, 'stationarized.nb'")

We plot the dynamics induced by a one standard deviation increase in the labor-augmenting shock in the
manual and automated solutions in Figure 1; the top part has the stationary variables, the bottom part

the level variables. If the automated solution is accurate, the responses should be identical.

y r |
1.828 1.828 2 2
0.0626 0.0626
1.826 1.826
0.0624 f 0.0624
1.8241 1824 4 0p22 00622 T 11
1.822H 1.822  0.062 0.062
1.82 1.82  0.0618 0.0618 0 0
5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40
k i dA
0.5875 0.5875
4.65 4.65 1.04 1.04
4.64 464 5874 0.5874
4.63; 4.63 1.035F 1.035
4.62] 462 0.5873 0.5873
4.61 4.61 ; 1.03 1.03
5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40
c A Cc
1.24 124 401 41.01
1.25 1.25
1.238 1.238
1.236 1.236 1-005F 1005 4 o5 1.245
1.234 1.234
1 1 1.24 1.24
5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40
1 K Y
0.594 0594 47 47 1.85 1.85
0.592 0.592
4.68 4.68 1.84 1.84
0.59 0.59
0.588 o588 466 4.66 1.83 } 1.83
5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40

=AUTOMATIC STATIONARY=MANUAL STATIONARY

Figure 1: Impulse responses. A is the labour augmenting process. y, r, 1, k, i, dA and ¢ are the stationary
variables in log deviation from the steady state; C, I, K and Y are the non-stationary levels of the variables.

The two impulse responses are clearly indistinguishable. As the economy becomes permanently more
productive, output (Y), consumption (C), investment (I) and capital (K) jump on impact and slowly
reach the new long run level. Because the expected output to capital ratio increases on impact, the real

interest rate (r) rises and this induces a fall in transitory consumption (c). As the economy moves to the

14



new steady state the real interest rate falls and transitory variables return to their original levels.

5.2 A New Keynesian model

This section compares the manual and the automated decision rules of a slightly modified version of the
Justiniano et al. (2011) model and studies the consequences of assuming unit roots in different shocks.
The model allows us to illustrate how the algorithm works when the trend path is driven by multiple
disturbances. The model deviates from Justiniano et al. (2011) in three ways: we assume Rotemberg
rather than Calvo prices and wages adjustments; we use different functional forms for capital utilization
and for investment-adjustment costs; and we set government purchases of goods and services to zero.
There are six types of agents: final and intermediate good producing firms, consumers, investment and
capital producers, and entrepreneurs. Their problems and the optimality conditions are in the Appendix
C. The model features nine disturbances, two of which are assumed to be non-stationary: Z;, the labor-
augmenting technology process, and Yy, the investment-specific technology process. Z; grows at the gross

Ty

rate 77 = -2t while Y, grows at the gross rate 7, = . The law of motion of all the disturbances is
t Zt,1 t thl

also described in the Appendix C.

Let P be the nominal price of the variable X in period t. The consumption good is the numeraire and

P
P

R =1+ the gross interest rate in sector or variable X and 7;¥ the net rate of interest. All other

its price is P, which will be non-stationary. Let m = be the inflation rate, W; the nominal wage,

variables are expressed in real terms, unless otherwise stated. Finally, let )N(t denote the stationary version

of X and )N(SS its steady state.

5.2.1 Computing the stationary system manually

Justiniano et al. (2011) state that Z; Y/~ is the balanced growth path for this economy. To show that
this is indeed the case, we scale the optimality conditions of by this factor and show that they still hold
after the transformation. From the final and intermediate goods sectors’ conditions we get:

i) Final good production function:

A = Q. (28)
ii) Pricing of final good:
P, = PF. (29)
iii) Intermediate goods production function:
Q= Gty () (30)
iv) Wage and nominal rate definitions:
—~ W, ~ TR
W= Ry, = U (31)
PYe 7, t



v) Labor demand function:
MCy ~

vi) Capital demand function:

N TTas Q_ pQ Q_ PP
vii) Using P,* = P,* (n) and m,° = PQ , the cost of adjusting prices is

PQ [ @ 2
TPQ,t — | —
¢ 2 ng

viii) The Euler equation for intermediate firms is:
_ B g Qy po | T th _
Qi —0;7Qr+MCWH, =5 — ¢ — =1 —5—Q
Q Q Q
-1 -1

i

PQ ”31 (ﬂ-tcil)2 T \ioq =
+Et Agb - 1 Qt+]_ (ﬂ-t—l-l) 7Tt+1 — 0

The first order conditions for the investment and capital producer give

ix) Production function for investment goods:

x) Investment price:

xi) Production function for capital goods:

- 1, ~

Kzlew = ZLt 1-8 Nit It-
I

xii) Optimality condition for investments:

1 = /
K

AiT Pt+1Z[,t+1S2
Ti+1

~ I L\
PtKZLt 1-5 ~7t — Sl Nit It
Iy I
xiii) Investment adjustment costs:

~ ~ 2
s(£) = 2l - et

I



and thus

I\ ~ én
NEAVEE
I

The first order conditions for the households and the entrepreneurs give:

Xiv) Marginal utility of consumption:

I,

7.\~ ¢nl|
g (27 o0l
I

AR R AR

(Ttl%" Zt) u (Cy) = (6’t)

xv) Marginal disutility of labor:

xvi) The stochastic discount factor:

Apgyi =

B’l

A
t—1 _

s
7

Iy

(ri) ™5 mf — (n L) T

SS

1
TY 1= z
7Tt ) o T‘—t

S8

A S e
(7 )= i)

:Z;L

.Pt+17~/ (étJri) 1

#(G) T ()
pt t 7Tt+7,' 7Tt+i

Then the one-period ahead stochastic discount factor is then

A1 =5

pry1tl’ (61&—‘,-1) 1

1

~1(~ s T Vit '
pi (Ct) thL () e e

xvii) Optimality condition for bond holdings:

xviii) Labor supply equation:

where

Ei[Apip1) Ry =1,

W, = Ve MRS (L, @)

MRS(Ly, Cy)

e

w
0" (G 1)

—E [A¢>W

Ztv’ (Lt)

l1—a
Tt

Te—1

1
w w
Ly Tpq1 ((Tep1 1
L =V v

=Y " ZMRS(Ly;,Cy).

(43)

(44)

(46)

(48)

(49)



xix) Wage adjustment equation:

xx) Optimality condition for capital:

ﬁtK = Et A7Tt_|_1

o | "
2 7T2/[_/ 1

iy
1

R 1Uir1 — 7 (Uit1)
t+1

t+1

xxi) Optimality condition for capital utilization:

where we have used that

RK
;\)/J(Ut) = Tt’y (Ut) — ?SS e¢u(Ut—1) _ 1] ’

a/ (Ut) = Tt’)// (Ut) = EK7556¢U(Ut71).

xxii) Effective capital definition:

K,

ﬁK,t =7 (Uy)

u

K-
:Ut tll

(=)

xxiii) Physical capital accumulation equation:

xxiv) Final goods market clearing:

xxv) Final goods inflation:

xxvi) Intermediate goods inflation:

xxvii) Wage inflation:

xxviil) Output definition:

Ky

(1—-0) K1
1
(m)7=e mi

P (1-0)

Y

z
Ur

Ry,

A,=C, 471

Ynar: = At

18

(50)

(51)



xxix) Output growth definition:

~ }7 o
AYwar; = =20 7z (g X)T=5 (62)

Ynari—1

A file with these equations and a set of instructions used to solve the system with the NB toolbox are in

the Appendix D.

5.2.2 Computing the stationary system automatically

The steps are the same as in the RBC example. First, we write the equations of the non-stationary
model to a file and save it with name jpt non stationary.nb. This file is reproduced in the Appendix E
together with the commands needed to make the model stationary and compute impulse responses. The
resulting file with the stationary model is also reproduced in the Appendix F. To check for the accuracy
of the automated solution, we compare impulse responses to an investment-specific technology shock in
the stationary version of the model computed manually and automatically and plot them in figure 2. The
two responses are identical also in this case.

An investment-specific shock permanently raises consumption, investment, and output although the
level of consumption and level of output temporarily move in different directions. As an investment unit
is permanently transformed into more capital, investment, consumption and output as a deviation from
the steady state temporarily fall and converge slowly. The responses of stationary variables are persistent
because price adjustment costs are important. Hours also fall but temporarily while price inflation and
wage inflation initially fall and then rebound as demand for transitory investment builds up. Finally, given
the Taylor rule, the dynamics of the interest rate track the dynamics of inflation along the adjustment
path.

It is instructive to analyze the G* functions produced. They are characterized by 18 equations:

AP = Q7 (63)
TS —aKP = (1—a) 20, (64)
K2+ RED =12, (65)
w\> A
. =T
() -
- =Yy (67)
PN~ A
- - -7
(5); -
K"y =17, (69)
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Figure 2: Responses of variables to an temporary shock to investment-specific technology. The green line

gives the steady state/inital value.
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RED =~ (U)2, (76)

K = K", (77)
KP = K], (78)
AP =cp, (79)
Yo = AL (80)

(63)-(64) come from the final good and the intermediate production functions, (65)-(66) from the inter-
mediate producer conditions, (67)-(68) from the investment good production function and optimization,
(69)-(70) from capital production and optimization, (71)-(78) from the consumer optimality conditions,
while (79)-(80) are obtained from market clearing and the resource constraint.

Recall that these equations characterize the trending variables. Note that, while capital, its real rate
and the real wage are on the list, hours are not. Also, since the relative price of capital is trending, the
marginal rate of substitution between leisure and consumption is also trending. We contrast these facts

next with those implied by a model with unit root in preferences.

5.2.3 Changing the location of the unit root

To investigate the consequences of assuming unit roots in different disturbances, we let the preference
shock, rather than the investment-specific technology shock, be a unit root process. In practice, this
requires removing Y; from the list of processes generating non-stationary dynamics, and adding X; to it,
where X; is the preference shock, entering the utility as follows

. w bC C . —bcc_
w(@ ) = et (1= 2 Y | S0
s (1—7?2)

S8
The model file is in the Appendix G. The automatically stationarized file in the Appendix I.

(81)

Clearly, when different disturbances feature unit root, the G’ function will generally change as differ-
ent variables display trending behavior. Thus, a comparison of the G* functions allows a researcher to
understand the specification that is more likely to be compatible with the data. When the preference
shock features a unit root equations (63), (69), (72), (77), (78), (79) and (80) are unchanged. Equations

(67),(68), (70), (74)-(76) are no longer relevant. From the intermediate production function, we now have:

(a = 1DLE+ TS —aKP = (1—a) 25, (82)

while equations (65), (66) and (71) become

K2+ RED =12, (83)
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Table 1 Balanced growth, selected variables.

Model with a unit root Model with a unit root

in investment technology in preferences
C 1.0030 1.0029
I 1.0090 1.0029
K 1.0090 1.0029
L 1.0000 1.0011
Y 1.0030 1.0029
Lk 0.9941 1.0000
w 1.0030 1.0018
N
it +(p) =1 (59)
P/
CP —u (O)) = X[ (85)

Compared with the version with investment specific unit root, the return on capital is now stationary
while hours worked are trending to allow for the permanent increase in preferences for consumption. As
a consequence, the marginal utility of labor is also trending and the marginal rate of substitution is also

affected because with trending hours, real wages do not grow at same rate as output.

(LY =4 (L), (86)

v (L) A—v’ A oA
<u’ (C)>t =v' (L), (@) - (87)

Finally, the market clearing condition imply an additional restriction:

AP =yIT (88)

We report the growth rates of few variables of the model in table 1. In the economy with investment-
specific technology shocks, investment and capital increase faster than output over time, as the real price
of investment decreases over time, while this is not the case in the economy with unit roots in preferences.
Thus, this set of facts can be used to select which specification is more in line with the data. Alternatively,
suppose that the labor share is of interest. If, in the data, it is trending and hours are stationary, which
happens in US, France, Germany and Canada (see e.g. Canova and Matthes (2021)) then a model with
unit root in investment-specific shocks should be preferred, as it implies trending output and stationary
hours. If, on the other hand, the labor share and hours are both trending, as it happens, for example, in

the UK, then a model with unit root in preferences is more appealing, as both output and hours display a
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Table 2 Steady states and unconditional variances, selected variables.

A unit root A unit root
in investment technology in preferences
Steady states

C 1.0760 1.1324
m 1.0070 1.0070
W 1.0101 1.0089
I 0.1711 0.2333
K 5.0737 8.3790
L 0.9430 0.9499
Y 1.2471 1.3657
1+ 1.0114 1.0053
Variances
c 4.4702 5.7502
T 0.4738 0.4815
i 0.1692 0.1699
I 3.5098 6.6931
K 2740.7912 6541.5216
L 1.6128 1.8329
Y 6.6636 7.8057
1+ 0.2721 0.2817

unit root without being cointegrated. In general, with stylized growth facts in hand, one can choose which
disturbances should be made non-stationary, and this helps to improve the specification of the model.

Table 2 reports the steady-state values and the unconditional variances of two stationary versions of the
model for selected variables. Clearly, the steady states generally differ. For a given set of parameters,
average consumption, investment, hours and output are typically higher in the economy with a unit root
in preference, while wages and the nominal rate are smaller. This is because preferences and technologies
are simultaneously trending. As a consequence, the model with a unit root in preference also displays
higher variability. For example, capital is almost two and half times and consumption is one fourth more
volatile in this case.

Impulse responses to a labor augmenting shock in the two systems are in figure 3. While the growth rates
and the steady states of the two models differ, the dynamics in response to other shocks present in the
model should be qualitatively independent to the location of the other unit roots. Indeed, the responses
in the two systems are similar. The main quantitative difference comes from the fact already mentioned
that capital grows faster in the economy with investment specific unit roots and this produces a different

steady state for consumption, investment, and output.
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Figure 3: Responses to a labor augmenting technology shock. The purple line gives the steady state/inital
value in the economy with investment-specific technology, while the green gives the steady state/inital
value in the economy with unit roots in preferences.

5.3 Models with endogenous unit roots

As mentioned one of the advantages of our approach relative to existing ones, is that it can be employed
also in models where the process responsible for the growth dynamics is endogenous rather than exogenous.

To illustrate that indeed the mechanical approach works in this case, we consider a closed economy
model with exogenous labor supply, endogenous physical and R&D capital accumulation; preferences are

logarithmic in consumption. The production function is
Y= (A L) K, (89)

where Y; is output, L; = 1 is labor, K; is physical capital, A; is R&D capital and ~ is the labor share.
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Physical capital accumulates according to
Ki=(1-6)Ki1+ I, (90)

where [; is physical investment and ¢ the depreciation rate. The representative household maximizes

[ee]
E|) BU(Cis)|, (91)
s=0
where (3 is the discount factor, subject to (89), (90) and the constraint
A RD _ A
Yi4 By + PA(1 = 6% Ay 1 = Cy+ I + (1 +741)By_1 + PAA + T, (92)

where By are one period bond, T} are the lump-sum taxes and PtA the relative price of R&D capital and

67D is the depreciation rate of R&D capital. Optimization implies:

U'(Cyt1) B
B p e | aer -1 (93)
E[Y;41]

= (1 —~)———— —, 94
= (-t (91)

PA 1 Y,

47 =E |21 - 8Py 4 =L

+ 7y PtA ( )+ PtAry A, (95)

A R&D capital producer maximizes profits by choice of investment S
mazys,) [PtAAt — PtA(l — 5RD)At_1 - (1- ssz)St] , (96)
subject to the R&D accumulation equation

A = [1 — R 1o (i) eut] Ay, (97)

where v(.) is a function on the form

1

S\ 0[S\t
We assume u; ~ iid(0,02). The R&D government subsidy s*” is stochastic and follows a AR(1) process:
log(sFP) = (1 — N)log(sEP) + Mog(sEh) + €. (99)

The optimality condition for R&D capital producer is:

=

A S
At—1 t Ut RD
Pt . 0 <t> (& =1- St . (100)
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The government finances R&D subsidies s/’ S, using lump-sump taxes 7; and issuing one period real

bonds B;. The budget constraint is
By — (14 7r1)Bi_1 + T; = sIP Sy, (101)
(93)-(95) , (89), (90), (97) , (99), (100), (101) determine the equilibrium.

In this model both u; and s/*P are stationary but A; is a unit root with endogenous drift. Applying
the rules of Section 3 one finds that output, consumption, physical investment and physical capital, R&D

investment and R&D capital all grow at the same rate which is given by (1—6%P +v(sss)), where s = %.

Hence for these six variables H'(A;) = A;, and the G* functions are given by

Yo =v(AQ + Lo) + (1 - KL (102)
AL =log(1 — 6% + v (s4s)). (103)
K& =14, (104)

Y5 =05 (105)

res =0, (106)

SA& = AL, (107)

The stationary system is represented by eight equations:

1 ko \ '
v = (m) 1y (At,;) . (108)

Production function:

Capital accumulation equation:

ki1
ki=(1—0)— 1
= ( )Akt + it (109)
Market clearing condition:
Y = ¢t + it + Sty (110)
Euler equation:
FEleir1Ac
M :5(1_’_74)7 (111)

Ct

Definition of the real rate:
") Elyi+1Ay41]

(1-— =749 (112)
ki
Optimality condition with respect to R&D capital:
Epi 1
141y = [gijl] (1—6%P) + I?WE[ytHAytH] (113)
t t
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Optimality condition for the capital producer:

pA
At () et =1, (114)
Finally, the R&D capital accumulation equation:

Ay
At—l

Aay = = [1 — 0% v (sg) e . (115)

We compute the linear approximation to the solution of this system and the responses to an impulse in

the government subsidy s/*P. We repeat the exercise using the mechanical approach. The file with the

automatically stationarized model is in Appendix J. Figure 4 shows that the two solutions are identical.
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Figure 4: Responses to a subsidy shock
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6 Comparison with other packages

Although other toolboxes have the capabilities to deal with non-stationary models, they are more restrictive
in what the user is allowed to do and require crucial inputs in the stationarization process.

DYNARE has a symbolic facility designed to transform the first order conditions of a non-stationary
model. However, to implement the transformation the user needs to provide both the growth factors and
the endogenous variables that are trending. Furthermore, at least in its current format, DYNARE only
accepts exogenous unit root process and can not deal e.g. with deterministic trends or endogenous growth.
In Appendix K we provide a DYNARE code to solve the RBC example of Section 5.1 and the responses
which as generated by an impulse in the labour augmenting disturbances.

IRIS, on the other hand, uses a numerical approach to transform the first-order conditions of the problem
into a stationary format. Relative to IRIS, our algorithm has a number of advantages. First with IRIS
the user needs to provide the growth path around which the numerical approximation is taken; this
is automatically found with our approach. Second, we use a symbolic approach, which is free from
numerical approximation error; third, our setup gives the user the possibility to inspect the G* functions
and understand how the model has been made stationary; finally the stationary model our approach

produces can be used in other packages.

7 Conclusion

As Lafourcade and de Wind (2012) have noticed “... setting up, solving and estimating a DSGE that
includes multiple theoretically-founded trends is a non-trivial exercise”. The algorithm we provide makes
this process less painful and less subject to algebraic mistakes. The approach is simple and straightforward;
it allows a researcher to compare the consequences of different trend assumptions and to select the one
which is more likely to characterize the available data. All of this, without tedious algebra and the risk
of having to redo the computations several times. The algorithm we propose uses symbolic language and
prepackaged MATLAB routines to generate the stationary system. Once this is obtained the model can
be solved and standard dynamic analysis performed.

The codes used in the paper belong to the NB toolbox developed by Kenneth S. Paulsen. The toolbox
is freely available, and downloadable at https://github.com/Cokspl/NBTOOLBOX/. The same location
contains the files needed to replicate the examples of Sections 5.1, 5.2, 5.3 (https://github.com/Cokspl
/NBTOOLBOX/tree/main/Examples/Econometrics/DSGE/Non_stationary_model).
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A Description of how the algorithm is implemented

The algorithm utilizes different classes existing in the NB toolbox:
1. The model file is parsed, and written into a MATLAB function handle.

2. The process of finding the restrictions imposed on the balanced growth path is performed utilizing
the nb_bgrowth class. First, endogenous and exogenous variables, unit root process and parameters
are transformed to a set of nb_bgrowth objects which are passed to the MATLAB function handle
representing the equations of the model. The result is the set of restrictions holding along the

balanced growth path.

3. The initial solution for the balanced growth path is obtained by transforming the equations found in

step 2 to a linear system. From this solution it is possible to identify the R non-stationary variables.

4. The identification of the R the G* functions is done with the function nb_findBasis. To get the
symbolic representation of the G¥’s, we first construct a function handle representing these equations,

and then utilize the nb_term class and subclasses to transform it into symbolic equations.

5. The stationary representation of the model is constructed using nb_st Term. This requires transform-
ing the endogenous and exogenous variables and unit root variables to class nb_stTerm objects using
the solution for the balanced growth. The parameters are transformed to nb_stParam objects. Then
these objects are passed to the MATLAB function handle representing the non-stationary equations.

The result is the stationary representation written in the model file syntax.

6. With the stationary representation, the model can be solved in a standard way. The examples
presented in the paper utilizes the myAD 2, or nb_mySD classes. Again, endogenous and exogenous
variables, unit root process and parameters are transformed to a set of objects which are passed to
the MATLAB function handle representing the stationary equations of the model. The result is a

set of matrices representing the linearized system, which is solved by Klein (2000) algorithm.

Step 1 uses the nb_dsge class constructor; steps 2-4 the nb_dsge . solveBalancedGrowthPath method?,
while step 5 employs the nb_dsge.stationarize method. The final step is performed by the nb_dsge.solve

method. The following command allow one to perform model-based analysis once the solution is found:
IRFs Produces impulse response functions using the method nb_dsge.irf.

Theoretical moments Produce the theoretical moments of the model using the method nb_dsge.theoreticalMome

?QOriginal code is written by SeHyoun Ahn, and can be found here https://github.com/sehyoun/MATLABAutoDiff
3 A method is a function that is related to a class. For example the nb_dsge.solveBalancedGrowthPath method
is a function that act on an object of class nb_dsge.
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Filter If nb_dsge is assigned to data, using the nb_dsge.set method, you can run the Kalman filter

using the nb_dsge.filter method. See also the nb_dsge.getFiltered method.

Forecast If the model is filtered, forecast can be produced using the nb_dsge.forecast method. See

also nb_dsge.getForecast and nb_dsge.plotForecast methods.

B The details of the RBC model

The production function is
Y, = (AdLy) 'K}, (116)

where Y; is output, L; = 1 is labor, K; is capital, A; is the labor augmenting productivity, and -y is the

labor share. Let I; be investment and ¢ is the depreciation rate. Capital accumulates according to
K,=(1-06)Ki—1+ 1L, (117)

A representative household maximizes the discounted utility

E

ZﬂSU(Ct-i-s)] ; (118)

s=0

where 3 is the discount factor, subject to (116), (117) and the constraint
Bi+Y:,=Ci+ Li(1+7r-1)Bi—1 + Tt (119)

where B; are one period bond issued by the government. The government collects lump sum taxes, T,

from the households.

The optimality condition is

E[gt:l] = B(1 4 1), (120)
where 7, the real interest rate, is given by
EY;
re=(1-7) [Ktt“] — 4. (121)
Markets must also clear
Y, =Ci+ 1. (122)

(120)-(121) together with (116), (117) , (122), determine the equilibrium.

The stationary model file
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endogenous
yrlkidA cD_ZyD_Z kD_Z_iD_Z cD_ZA

exogenous
u

parameters
std_u lambda gamma g delta beta

model

(c(+1)*D_Z_c(+1))/c = betax(1l+r);

1-1;

y = ((1%1)~gamma)*((k(-1)*D_Z_k~-1)~(1-gamma)) ;
((1-gamma)* (y(+1)*D_Z_y(+1))) /k = r+delta;

k (1-delta)*(k(-1)*D_Z_k~-1)+i;

y = c+i;

dA = 1/(1%D_Z_A"-1);

1/(1*D_Z_A~-1) = ((g~(1-lambda))*(((1*D_Z_A~-1)/(1*D_Z_A~-1*D_Z_A(-1)"-1)) ~lambda)) *(exp (std_u*u)) ;
gammaxlog(D_Z_k)+log(D_Z_y)-gammaxlog(D_Z_A)-log(D_Z_k) ;
log(D_Z_y)-log(D_Z_k);

log(D_Z_k)-log(D_Z_i);

log(D_Z_y)-log(D_Z_c);

reporting

A=exp(cumsum(log(dA) - log(steady_state(dA))));
C=cx*A;

I=1ixA;

K=k*A;

Y=y*A;

c_log_dev=exp(log(c) - log(steady_state(c)));
i_log_dev=exp(log(i) - log(steady_state(i)));
k_log_dev=exp(log(k) - log(steady_state(k)));
r_dev=r - steady_state(r);
y_log_dev=exp(log(y) - log(steady_state(y)));

C The details of the New Keynesian model

Final good sector
The final goods sector combines intermediate goods, Q;(n) into a final good A; sold at a price P;. The

production function is:

1 -1 oH 1
Qi = UO Q) GtHdn] o (123)

where 0/ is the elasticity of substitution between different intermediate goods, and it assumed to follow

an AR process. The optimal combination of Q¢(n) is found by cost minimization
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1
min P%n n)dn,
{Qt(n)}/o v (m)Qiln)

subject to (123). The resulting optimality condition is:

Q"
Qt(n) = (Pt ( )> Q1

PP
where

1

1 1_oH
PP = [ /0 a%ﬂ—@fdnr "

Final good firms maximize the profit function

PA; - PPQy,
subject to
A = Q.
The optimality condition is
P, =PC.

Intermediate goods sector

(124)

(125)

(126)

(127)

(128)

Intermediate goods firms use effective capital and labor to produce a good which is sold under monopolistic

competition to the final goods sector. The intermediate firm n has the production function

Qi(n) = (Zez{ Li(n)) " “K(n)*,

(129)

where o € [0,1] is the capital share, L; (n) and K; (n) denote hours and effective capital of firm n in

period t. There are two shocks to productivity: Z;, a permanent labor-augmenting technology process,

growing at the gross rate 77, and z}, a temporary shock to productivity (or labor utilization). Total labor

input to firm n aggregate labor inputs from all households j:

Pt
Yr—1

1
Li(n) = / Ly(n, )" % dj
0
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where 1 is the elasticity of substitution between differentiated labor. Let W; be the wage rate and R

the rental rate. Minimizing total factor outlays:
WtLt(TL) + RtKFt(TL),

subject to 129 leads to the following first order conditions

Li=(1- a)]\éfftQt(n), (131)
K = a]‘gg@t(n), (132)

where M C} is marginal cost. In symmetric equilibrium all n firms make the same decision, so Ly = L¢(n),

K; = K(n) and Q; = Q¢(n). Firm n will minimize labor costs subject to the optimal level of labor input:

1
min [ Ly )W) (133)
ll,t(nu]) 0
subject to
bt
1 Pp—1
1
/Lt(n,j)l‘wj ~ Li(n). (134)

0
Thus the conditional labor demand functions facing household j is

Li(j) = <WVtéj)>_% Ly. (135)

Firms in the intermediate sector sell their goods monopolistically. Each firm n charges the PtQ (n). Profits

paid out as dividends to households) are:

Iy (n) = P (n) Qu(n) = WiLy (n) = R () Ky (n). (136)
The costs of adjusting prices are

2

Q
i 1| (137)

2

PP (n) /P2, (n)
P2, /P2,

YPQ,t(1)

1

where PtQ = {fol PtQ (n)l_efl dn| %" . The costs of changing prices is governed by the parameter ¢F'?.

These costs are assumed to be intangible. The intermediate firm n faces the demand function: Q:(n) =
PR

_gtH
(Ptgl)> Q; Optimal price setting for firm n requires maximizing *:

“To make the expression easier to work with, the costs of adjusting prices are linear in PtQQt and not PtQ (n)Q¢(n)
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o0 Q e " e\ "
IIy = Z AV B n) < tPtQ ) Q= MG < iPtQ > Qt]
= —p(n)PPQ;

In symmetric equilibrium, all firms will behave the same, and thus:

Q / pQ Q / pQ
Q1 PQ Pr/PZy Pr Pz,
Qi — 07 Q.+ MCHI =L — ¢ — Q
PP PR /P2, | P2/PS,
P2, /PP (P2,/P2)?
+E, {A¢PQ UL 2R L 0 b =0, (138)
PP /P2, PP /P2,

Investment producer
Perfectly competitive firms purchase Y,/ units from the final good producers, and produce investment

goods Iy according to the production function

I = T.Y/!. (139)

Y, represents investment-specific technological (IST) progress, which is specified later, and I; is the in-
vestment good sold to capital producers. The objective of investment producers is to maximize the profit

function

P'1, - RY/, (140)

subject to (139). The optimal condition is:
T.Pl =P, (141)

Capital producer

new

Capital goods, K{**, are produced by a sector which purchases investment goods I; and transform them

into capital, sold to households at price P<. The production function is:

KIe® = zp, <1 ~ 8 (It>> L. (142)
I

S captures the presence of adjustment costs in investment. zr; is the marginal efficiency of investment

shock process. The objective of capital producers is to maximize the expected discounted future profits:

o0
B> A [PEEP™ - P1], (143)

t=s
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subject to (139). Optimality implies:

et 1 At
E [Aptl—f-lth-&-lSQ (Hl) It—i—l] + Pl zry [1 -5 (t) -5 (t) It} - Pl =0, (144)
It —[t—l It—l

where we assume that

I; ) on { I T r
S|— ) =" |— —(ms) 77| 145
<It—1 2 |1 () (145)
Thus
I I Ty 1
S () = [ — (mos) 17 TF] —, 146
"\ én Iy (m2:) I (146)
Iy I; — Iy
S/ — _ _ 1—a 2 147
2 <It—1> ¢Il |:It—1 (ﬂ-ss) 7Tss:| 1152_1 ) ( )
Households

Each household supplies a differentiated labor input to intermediate firms and set wages under the
assumption of monopolistic competition. Households obtain utility from consumption and leisure. Pref-

erences are additively separable. Lifetime expected utility of household j at time s is

Us () = Es ) B8 pu [u(Cy () = v(Le ()] (148)

where [ is the discount factor, p; is a discount factor shock, C}y denotes consumption, and L; labor. The

in-period utility function is

. u b* Ci(j) —b°Ci
u (Cy =z |1- —— In , 149
(€ () ( E— W) (—— (149)

[e]
(mds) T=omgs

v (L (5)) (150)

S 14¢ 1— b

b¢ governs habit persistence, 7%, denotes the steady-state labor augmenting technology growth rate and

1= [Lt (j) — blLt—l} e

7T;,I; the steady-state investment-specific technology growth rate. The degree of disutility of supplying labor
is captured by ¢ > 0, the inverse Frisch elasticity. As (149) indicates, we assume a log in-period utility
function for consumption. This insure the existence of a balanced growth path. The household’s budget

constraint is
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PCy(j) + PEKP (4) + PiBi(j) + Pry(U) Ko
+Wi(G)Le(3) e (7) + T2 ()
< Ry 1P Bi1(§) + Wi(j) Lu(§) + REUK 4 (151)
+Q:(j) + We(j) + DIV, (4),

where P, is the price level of final goods, R; is the gross interest rate, B:(j) is real household’s borrowing,
Wi(j) is the nominal wage rate set by household j, v.(j) is intangible wage adjustment costs (defined
in (156)), L () is the total hours worked, and DIV, (j), II; (j) and T;(j) are is the net cash flow from
household’s j portfolio of state contingent securities, profits (in nominal terms) paid out and taxes paid,
respectively. Households rent out utilized capital U;K;_1 at the rate R, where U; is the utilization rate
and K; 1 the capital stock at the end of last period. We assume intangibility of the utilization cost.
K (7) is new capital bought from the capital producers at price P and v (U;) K;_1 is a cost specified

and:

RS [ éuwi-1)
— s wlUe=1) _q 152

where ¢,, governs the cost of adjusting utilization. Time ¢ utilized capital iis

K, = UK, . (153)

The physical capital accumulation equation is

Ki=(1-68 K,y + K", (154)

Household j faces the following labor demand curve:

Li(j) = <Wt(j)>wt Ly, (155)

Wi
where W; is the wage rate. We further assume that there is sluggish wage adjustment due to resource
costs measured in terms of the total wage bill. We deviate from JPT, and assume that wage adjustments

costs are

_ ¢ [Wt () /Wir () 1]2_ (156)

Ye(J) =
G) 2 W1 /Wi
Thus, costs are related to changes in wage inflation relative to the past observed rate for households.

®" > 0 determines how costly it is to change the wage inflation rate. Maximizing (148) subject to the

budget constraint leads to the following optimal conditions in symmetric equilibrium
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v’ (Lt)
u' (Ct)

per1u’ (Cey1)

Py

B

pru’ (Cy)

it = [(m 1) (1= ) + 6V (

R =1
Pt+1:| '

Wi/ Wiq
W1 /Wi

pir1v (Civ1) Pr Lyt w
—E; |8 ;
pe (Cr)  Pryr Ly

PK
pru’ (Cy) - = E
t

Bprru (

Rk ¢
Py

PK
Cerr) (Pii

(1-08)+

Wi/ We )

Wi /Wi

R SS —
= (Uy) 7;; (U1,

Final good market clearing and definitions

Inflation

Intermediate goods inflation

Investment price inflation

Capital price inflation

Wage inflation

Output

A =Cy + Y.
_ h
T = .
TP
7TQ _ PtQ
|2 NS)
Py
;P
7Tt PI
1—1
x  PE
7Tt = PK
-1
TV = Wi
¢ Wi_1
Ynar: = At
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t+1

)

Wi /Wiq

(Wt+1/Wt)2

Wi/ Wi_q
Wi1/Wia

|\

|

Uty1 — (Ut+1)>] :

(157)

(158)

(159)

(160)

(161)

(162)

(163)

(164)

(165)

(166)

(167)



Output growth

Ay
A

AYNar: =

The Monetary policy rule is

wp }7 wy . l-wpr
~ WAY
Ry = (Ri_y)“" <Rss ( Tt ) <~NAT,t ) (AYNAT,t) ) R,
Tss

YNAT,SS

(168)

(169)

where wp wp, wy and way are the weights on past nominal rate, inflation, output gap and output growth;

and zg; is a monetary policy shock.

The shock processes

Labor augmenting technology shock:

Z
log <Z t ) =log(m7) = (1 — Ar=) log(mZ,) + Ar= log(m7_1) + €x= t07=.
t—1

Investment-specific technological shock:

T
IOg <,rt> = log(ﬂ-g) = (1 - )\ﬂ.’r) log(ﬂ';) + )\ﬂ_’r log(ﬂ-z’fr—l) + EﬂT,tUﬂ-T.
t—1

Intermediate good sector productivity shock:
log(th) =(1-X\r) log(zsLs) + AL log(th_l) + €L 40,0
Labor market competition shock:
log(1t) = (1 — Ay) log(vss) + Ay log(hr—1) + €y 10y

Intermediate good market competition shock:

log(é?f{) = (1— M) log(é?g) + Mg log(@tlfl) + €p 4ogH .

Marginal efficiency of investment shock:

log(zr,:) = (1 — Ar)log(zr,ss) + Arlog(zr4—1) + €r o7

Monetary policy shock:

log(zrt) = (1 — Ag)log(2r,ss) + Ar10g(2Rt—1) + €RLOR-

Consumption preference shock:
log(z;') = (1 — Azu)log(zg,) + Azvlog(2t 1) + €xup02u.
Discount factor shock:

log(pe) = (1 — A,) 10g(pss) + Aplog(pe-1) + €20

where \; regulates persistence and o; the standard deviation, j =1...,9
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(174)

(175)

(176)

(177)
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D The manually made stationary file

endogenous

A_NW % Final goods production

C_NW % Consumption

DPQ_C_NW % Consumption growth

DPQ_I_NW % Investment growth

DPQ_K_NW % Capital growth

DPQ_P_NW % Inflation

DPQ_PQ_NW % Intermidate goods inflation
DPQ_REAL_PI_NW % Real investment inflation
DPQ_REAL_W_NW % Real wage inflation

DPQ_W_NW % Wage inflation

DPQ_Y_NW % Output growth

DSA_NW % Stochastic discount factor

DUT_NW 7% Investment-specific technological progress
DZT_NW 7 Permanent labor-augmenting technology process
GAMMAPRIME _U_NW % Marginal cost of utilizing the capital
GAMMA_U_NW % Cost of utilize the capital

GAMMA_W_NW 7, Wage adjustment cost

I_NW % Investment

K_NW % Capital

KBAR_NW %, Utilized capital

KNEW_NW 7, Capital goods produced each period

L_NW % Hours worked

MC_NW % Marginal cost

MRS_NW 7% Marginal rate of substitution

NAT_Y_NW % Output

PSI_NW % Competition in the labor market shock process
Q_NW % Demand for intermediate goods

REAL_PI_NW % Real price of investment

REAL_PK_NW 7 Real price of capital

REAL_PQ_NW % Real intermediate goods price

REAL_W_NW % Real wage rate

RHO_NW % Discount factor shock process

RK_NW 7% Rental rate of capital

RN3M_NW 7, Money market interest rate

S_NW % Investment adjustment cost function
S_PRIME1_NW %, Derivative of the investment adjustment
% cost function wrt 1st input times I_NW

S_PRIME2_NW % Derivative of the investment adjustment
%cost function wrt 2nd input times I_NW

T_NW % Intermediate goods production

THETAH_NW 7% Price markup shock process

U_NW % Utilization rate

UPRIME_NW % Derivative of the utility function of

% households wrt consumption

VPRIME_NW 7% Derivative of the utility function of

% households wrt labor

Y_I_NW % Input to investment production

Z_I_NW % Marginal efficiency of investment shock process
Z_L_NW % Temporary labor augmenting technology shock process
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Z_RN3M_NW % Monetary policy shock process
Z_U_NW % Consumption preference shock process

exogenous
E_DUT_NW % Investment-specific technological innovation
E_DZT_NW % Permanent labor-augmenting technology innovation
E_I_NW % Marginal efficiency of investment innovation
E_L_NW % Temporary labor augmenting technology innovation
E_PSI_NW % Competition in the labor market innovation
E_RHO_NW % Discount factor innovation

E_RN3M_NW % Monetary policy innovation

E_THETAH_NW %, Price markup innovation

E_U_NW % Consumption preference innovation

parameters

ALPHA_NW % Capital share

BC_NW % Habit in consumption

BETA_NW % Discount factor

BL_NW % Habit in hours worked

DELTA_NW % Depreciation rate

DPQ_P_NW_SS % Steady-state inflation

DUT_NW_SS 7% Steady-state growth rate in

% investment-specific technology

DZT_NW_SS % Steady-state growth rate in

% labor-augmenting technology

LAMBDA_DUT_NW 7% Shock persistent parameter for the

% investment-specific technology shock

LAMBDA_DZT_NW % Shock persistent parameter for the

% labor-augmenting technology shock

LAMBDA_I_NW % Shock persistent parameter for the

% marginal efficiency of investment shock

LAMBDA_L_NW % Shock persistent parameter for the

% temporary labor augmenting technology shock
LAMBDA_PSI_NW % Shock persistent parameter for the

% competition in the labor market shock

LAMBDA_RHO_NW 7% Shock persistent parameter for

% the discount factor shock

LAMBDA_RN3M_NW % Shock persistent parameter for

% the monetary policy shock

LAMBDA_U_NW % Shock persistent parameter for the

% price markup shock

LAMBDA_THETAH_NW % Shock persistent parameter for the

% consumption preference shock

OMEGA_Y_NW % Taylor rule coefficient on ouput gap.
OMEGA_DPQ_Y_NW % Taylor rule coefficient on ouput growth gap.
OMEGA_P_NW % Taylor rule coefficient on inflation gap.
OMEGA_R_NW % Interest rate smoothing in the taylor rule
PHI_PQ_NW % Intermediate goods price adjustment cost parameter
PHI_I1_NW % Investment adjustment cost parameter
PHI_W_NW J Wage adjustment cost parameter

PHI_U_NW % Capital utilization cost parameter

PSI_NW_SS 7 Steady-state elasticity of substitution between
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% differentiated labor

RHO_NW_SS % Discount factor shock process in steady state
THETAH_NW_SS % Steady-state elasticity of substitution

% between intermidate goods

ZETA_NW %, Inverse Frisch elasticity

Z_I_NW_SS % Marginal efficiency of investment shock in

% steady-state

Z_L_NW_SS 7% Temporary labor augmenting technology shock
% in steady-state

Z_RN3M_NW_SS % Monetary policy shock in steady-state
Z_U_NW_SS % Consumption preference shock in steady-state
std_E_DUT_NW J, Standard deviation of the innovation to

% the Z_DUT_NW shock process

std_E_DZT_NW ’ Standard deviation of the innovation to

% the Z_DZT_NW shock process

std_E_I_NW % Standard deviation of the innovation to

% the Z_I_NW shock process

std_E_L_NW % Standard deviation of the innovation to

% the Z_L_NW shock process

std_E_PSI_NW % Standard deviation of the innovation to

% the PSI_NW shock process

std_E_RHO_NW % Standard deviation of the innovation to

% the RHO_NW shock process

std_E_RN3M_NW % Standard deviation of the innovation to
% the Z_RN3M_NW shock process

std_E_THETAH_NW 7, Standard deviation of the innovation to
% the THETAH_NW shock process

std_E_U_NW % Standard deviation of the innovation to

% the Z_U_NW shock process
model

% 1) Final goods sector
% Production function (A_NW)
A_NW = Q_NW;

% FOC (Q_NwW)
REAL_PQ_NW = 1;

% 2) Intermediate goods
% Intermidate production function (KBAR_NW)
T_NW = (Z_L_NW+L_NW) "~ (1-ALPHA_NW)*KBAR_NW~ALPHA_NW;

% Optimality condition wrt utilized capital (I.e. demand function) (MC_NW)
KBAR_NW = ALPHA_NW* (MC_NW/RK_NW)*T_NW;

% Optimality condition wrt aggregated labor (I.e. demand function) (L_NW)
L_NW = (1 - ALPHA_NW)x*(MC_NW/REAL_W_NW)*T_NW;

% Pricing (REAL_PQ_NW)

Q_NW - THETAH_NWxQ_NW + MC_NW*THETAH_NW*Q_NW/REAL_PQ_NW
- 100*PHI_PQ_NWx (DPQ_PQ_NW/DPQ_PQ_NW(-1) - 1)*DPQ_PQ_NW/DPQ_PQ_NW(-1)*Q_NW
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+ DSA_NW%100%PHI_PQ_NW* (DPQ_PQ_NW(+1) /DPQ_PQ_NW - 1)
*DPQ_PQ_NW(+1)~2/DPQ_PQ_NW%Q_NW(+1)
*DUT_NW (+1) ~ (ALPHA_NW/ (1 - ALPHA_NW))*DZT_NW(+1) = 0;

% 3) Investment producer
% Investment production function (Y_I_NW)
I_NW = Y_I_NW;

% First order condition of investment decision (REAL_PI_NW)
REAL_PI_NW = 1;

% 4) Capital producer
% Capital production function (KNEW_NW)
KNEW_NW = Z_I_NW*(1 - S_NW)*I_NW;

% Investment adjustment cost function (S_NW)
S_NW = (PHI_I1_NW/2)*(I_NW/I_NW(-1)*DUT_NW~(1/(1 - ALPHA_NW))=*DZT_NW
- steady_state(DUT_NW)~(1/(1 - ALPHA_NW))*steady_state(DZT_NW))~2;

% Derivative of the investment adjustment cost function wrt 1st input

% (Multiplied by I_NW!) (S_PRIME1_NW)

S_PRIME1_NW = PHI_T1_NW(I_NW/I_NW(-1)*DUT_NW~(1/(1 - ALPHA_NW))*DZT_NW
- steady_state(DUT_NW)~(1/(1 - ALPHA_NW))*steady_state(DZT_NW))
*I_NW/I_NW(-1)*DUT_NW~(1/(1 - ALPHA_NW))*DZT_NW;

% Derivative of the investment adjustment cost function wrt 2nd input

% (Multiplied by I_NW!) (S_PRIME2_NW)

S_PRIME2_NW = -PHI_TI1_NW*(I_NW/I_NW(-1)*DUT_NW~(1/(1 - ALPHA_NW))=*DZT_NW
- (steady_state(DUT_NW))~(1/(1 - ALPHA_NW))*steady_state(DZT_NW))
*(I_NW/I_NW(-1)*DUT_NW~(1/(1 - ALPHA_NW))=*DZT_NW)"2;

% Optimal capital investment (I_NW)
0 = (DSA_NW*REAL_PK_NW(+1) /DUT_NW(+1))*Z_I_NW(+1)*S_PRIME2_NW(+1)
+ REAL_PK_NW*Z_I_NW*(1 - S_NW - S_PRIME1_NW) - REAL_PI_NW;

% 5) Households

% Derivative of the utility function of households wrt consumption

% (UPRIME_NW)

UPRIME_NW = Z_U_NWx((C_NW
- C_NW(-1)*(BC_NW/(DUT_NW~(ALPHA_NW/(1 - ALPHA_NW))*DZT_NW)))
/(1 - BC_NW/(steady_state(DUT_NW) "~ (ALPHA_NW/(1 - ALPHA_NW))
xsteady_state(DZT_NW))))~(-1) ;

% Derivative of the utility function of households wrt labor (VPRIME_NW)
VPRIME_NW = ((L_NW - BL_NW*L_NW(-1))/(1-BL_NW))“~ZETA_NW ;

% Stochastic discount factor (DSA_NW)
DSA_NW = BETA_NW*RHO_NW(+1)*UPRIME_NW(+1)/(DPQ_P_NW(+1)
*DUT_NW(+1)~(ALPHA_NW/(1 - ALPHA_NW))*DZT_NW(+1)*RHO_NWxUPRIME_NW) ;

% FOC wrt B (Consumption euler equation) (RN3M_NW)
DSA_NW*RN3M_NW = 1;
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% FOC wrt W (REAL_W_NW)

REAL_W_NW = PSI_NW*MRS_NW/((PSI_NW-1)*(1-GAMMA_W_NW)
+ 1000*PHI_W_NW*DPQ_W_NW/DPQ_W_NW(-1)*(DPQ_W_NW/DPQ_W_NW(-1) - 1)
- DSA_NW+DPQ_W_NW(+1)*L_NW(+1) /L_NW*1000*PHI_W_NW*DPQ_W_NW(+1)
/DPQ_W_NW+ (DPQ_W_NW(+1) /DPQ_W_NW - 1));

% Wage adjusment cost (GAMMA_W_NW)
GAMMA_W_NW = 1000*PHI_W_NW/2*(DPQ_W_NW/DPQ_W_NW(-1) - 1)"2 ;

% Marginal rate of substitution of consumption for leisure (MRS_NW)
MRS_NW = VPRIME_NW/UPRIME_NW;

% FOC wrt K (REAL_PK_NW)
REAL_PK_NW = DSA_NW*DPQ_P_NW(+1)*( (REAL_PK_NW(+1)/DUT_NW(+1))*(1 - DELTA_NW)
+ RK_NW(+1)*U_NW(+1) /DUT_NW(+1) - GAMMA_U_NW(+1)/DUT_NW(+1));

% FOC wrt U (RK_NW)
RK_NW = GAMMAPRIME_U_NW;

% Cost of utilize the capital (GAMMA_U_NW)
GAMMA_U_NW = steady_state(RK_NW)/PHI_U_NW*(exp(PHI_U_NW*(U_NW - 1)) - 1) ;

% Marginal cost of utilizing the capital (GAMMAPRIME_U_NW)
GAMMAPRIME_U_NW = steady_state (RK_NW)x*exp(PHI_U_NWx(U_NW - 1)) ;

% Capital accumulation (K_NW)
K_NW = (1-DELTA_NW)*K_NW(-1)/(DUT_NW~(1/(1 - ALPHA_NW))=*DZT_NW) + KNEW_NW;

% Capital utilization (U_NW)
KBAR_NW = U_NW*K_NW(-1)/(DUT_NW~(1/(1 - ALPHA_NW))*DZT_NW);

% 6) Market clearing and defintions
% Final good market (C_NW)
A_NW = C_NW + Y_I_NW;

% Intermediate good market (T_NW)
T_NW = Q_NW;

% Definition of output
NAT_Y_NW = A_NW;

% Consumption growth (DPQ_C_NW)
DPQ_C_NW = (C_NW/C_NW(-1))*DZT_NW+DUT_NW~(ALPHA_NW/(1 - ALPHA_NW));

% Investment growth (DPQ_I_NW)
DPQ_I_NW = (I_NW/I_NW(-1))*DZT_NW*DUT_NW~(1/(1 - ALPHA_NW));

% Capital growth (DPQ_K_NW)
DPQ_K_NW = (K_NW/K_NW(-1))*DZT_NW+DUT_NW~(1/(1 - ALPHA_NW));

% Output growth (DPQ_A_NW)
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DPQ_Y_NW = (NAT_Y_NW/NAT_Y_NW(-1))*DZT_NW*DUT_NW~(ALPHA_NW/(1 - ALPHA_NW));

% Intermidate good inflation (DPQ_PQ_NW)
DPQ_PQ_NW = DPQ_P_NW*REAL_PQ_NW/REAL_PQ_NW(-1);

% Real investment inflation (DPQ_REAL_PI_NW)
DPQ_REAL_PI_NW = (REAL_PI_NW/REAL_PI_NW(-1))/DUT_NW;

% Real wage inflation (DPQ_REAL_W_NW)
DPQ_REAL_W_NW = (REAL_W_NW/REAL_W_NW(-1))*DZT_NW*DUT_NW~(ALPHA_NW/(1 - ALPHA_NW));

% Wage inflation (DPQ_W_NW)
DPQ_W_NW = REAL_W_NW/REAL_W_NW(-1)*DPQ_P_NW*DZT_NW*DUT_NW~ (ALPHA_NW/(1 - ALPHA_NW));

% T7) Monetary policy rule (DPQ_P_NW)
RN3M_NW = RN3M_NW(-1) "OMEGA_R_NW* (steady_state (RN3M_NW)
* (DPQ_P_NW/steady_state (DPQ_P_NW)) ~OMEGA_P_NW
* (NAT_Y_NW/steady_state (NAT_Y_NW)) ~OMEGA_Y_NW
* (DPQ_Y_NW/steady_state (DPQ_Y_NW)) ~OMEGA_DPQ_Y_NW)
~(1-0MEGA_R_NW) * (Z_RN3M_NW/steady_state (Z_RN3M_NW));
[static] DPQ_P_NW = DPQ_P_NW_SS;

% 8) Shock processes
% Permanent labor-augmenting technology process (DZT_NW)
log(DZT_NW) = (1-LAMBDA_DZT_NW) *log(DZT_NW_SS)
+ LAMBDA_DZT_NW*log(DZT_NW(-1)) + E_DZT_NW*std_E_DZT_NW;

% Investment-specific technological progress (DUT_NW)
log(DUT_NW) = (1-LAMBDA_DUT_NW)*log(DUT_NW_SS)
+ LAMBDA_DUT_NW*log(DUT_NW(-1)) + E_DUT_NWxstd_E_DUT_NW;

% Competition in the labor market shock process (PSI_NW)
log(PSI_NW) = (1-LAMBDA_PSI_NW)*log(PSI_NW_SS)
+ LAMBDA_PSI_NW*xlog(PSI_NW(-1)) + E_PSI_NWxstd_E_PSI_NW ;

% Discount factor shock process (RHO_NW)
log(RHO_NW) = (1-LAMBDA_RHO_NW) *log(RHO_NW_SS)
+ LAMBDA_RHO_NW*log(RHO_NW(-1)) + E_RHO_NWxstd_E_RHO_NW ;

% Price markup shock process (THETAH_NW)

log(THETAH_NW) = (1-LAMBDA_THETAH_NW)*log(THETAH_NW_SS)
+ LAMBDA_THETAH_NW+*log(THETAH_NW(-1))
+ E_THETAH_NW#std_E_THETAH_NW ;

% Marginal efficiency of investment shock process (Z_I_NW)
log(Z_I_NW) = (1-LAMBDA_I_NW)*log(Z_I_NW_SS)
+ LAMBDA_I_NW*log(Z_I_NW(-1)) + E_I_NW*std_E_I_NW ;

% Temporary labor augmenting technology shock process (Z_L_NW)

log(Z_L_NW) = (1-LAMBDA_L_NW)*log(Z_L_NW_SS)
+ LAMBDA_L_NWxlog(Z_L_NW(-1)) + E_L_NW*std_E_L_NW ;
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% Consumption preference shock process (Z_U_NW)
log(Z_U_NW) = (1-LAMBDA_U_NW)*log(Z_U_NW_SS)
+ LAMBDA_U_NWxlog(Z_U_NW(-1)) + E_U_NWxstd_E_U_NW ;

% Monetary policy shock process (Z_RN3M_NW)
log(Z_RN3M_NW) = (1-LAMBDA_RN3M_NW)*log(Z_RN3M_NW_SS)
+ LAMBDA_RN3M_NWxlog(Z_RN3M_NW(-1)) + E_RN3M_NW*std_E_RN3M_NW;

% Construct reported variables that can be asked for in IRFs, but

% are not part of the model. Here you can use all MATLAB functions
% that act on a double vector, and returns an output with the same
% size as the input.

reporting
C_NW_LEVEL = exp(cumsum(log(DPQ_C_NW) - log(steady_state(DPQ_C_NW))));
I_NW_LEVEL = exp(cumsum(log(DPQ_I_NW) - log(steady_state(DPQ_I_NW))));
K_NW_LEVEL = exp(cumsum(log(DPQ_K_NW) - log(steady_state(DPQ_K_NW))));
Y_NW_LEVEL = exp(cumsum(log(DPQ_Y_NW) - log(steady_state(DPQ_Y_NW))));

To parse and solve this model you can use the following instructions:

o

% Read the stationary model
modelS = nb_dsge('nb_file','jpt.nb");

o

% Give it a name

modelS = set (modelS, 'name', 'Stationarize JPT manually');

% Set the parameters

param = struct ();

param.ALPHA_NW = 0.167;

param.BC_NW 0.859;

param.BETA_NW 100/(0.134+100);

param.BL_NW 0;

param.DELTA_NW 0.025;

param.DPQ_P_NW_SS (0.702 4+ 100)/100;

param.DUT_NW_SS 1 + (0.597/100);

param.DZT_NW_SS =1+ (0.303 - (param.ALPHA_NW/...
(1 - param.ALPHA_NW))*0.597)/100;

param.LAMBDA_DUT_NW = 0.156;

param.LAMBDA_DZT_NW 0.286;

param.LAMBDA_TI_NW 0.772;

param.LAMBDA_I,_NW 0;

param.LAMBDA_PSI_NW 0.967;

param.LAMBDA_RHO_NW 0.590;

param.LAMBDA_RN3M_NW 0;

param.LAMBDA_U_NW 0;

param.LAMBDA_ THETAH_NW 0.971;

param.OMEGA_DPQ_Y_NW 0.208;

param.OMEGA_P_NW 1.709;

param.OMEGA_R_NW 0.858;

param.OMEGA_Y_NW 0.051;

param.PHI_PQ_NW 0.2;

param.PHI_TI1_NW 2.657;
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param.PHI_W_NW
param.PHI_U_NW
param.PSI_NW_SS
param.RHO_NW_SS
param.THETAH_NW_SS
param.ZETA_NW
param.Z_I_NW_SS
param.Z_L_NW_SS
param.Z_U_NW_SS
param.Z_RN3M_NW_SS
param.std_E_DUT_NW
param.std_E_DZT_NW
param.std_E_TI_NW
param.std_E_L_NW
param.std_E_PSI_NW
param.std_E_RHO_NW
param.std_E_RN3M_NW
param.std_E_THETAH_NW
param.std_E_U_NW
modelNS

)

ssInit = struct (...

"GAMMA_W_NW', 0, ...

1.0080;

5.434;
1.135/(1.135 - 1);
1;

1.171/(1.171 - 1);
4.444;

’

e e e

0.630;

0.933;

5.103;

0;

0.310;

0.036;

0.210;

0.219;

0;

assignParameters (modelNS, param) ;

% Solve steady state numerically

'PSI_NW',param.PSI_NW_SS, ...

"S_NW',0, ...

'"S_PRIME1l_NW',O0, ...
'S_PRIME2_NW',O, ...
"GAMMA_U_NW',O0, ...

'THETAH_NW',param.THETAH_NW_SS) ;

modelS = checkSteadyState (models, ...

'solver',

'fsolve', ...

'steady_state_default', @ones, ...

'steady_state_init"',

'steady_state_solve',
ss = getSteadyState (modelS)

% Solve stationary model
modelS = solve (modelS);

ssInit, ...
true);
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E The non-stationary model file

endogenous

A_NW % Final goods production

C_NW % Consumption

DPQ_C_NW % Consumption growth

DPQ_I_NW % Investment growth

DPQ_K_NW % Capital growth

DPQ_P_NW % Inflation

DPQ_PQ_NW % Intermidate goods inflation

DPQ_REAL_PI_NW % Real investment inflation
DPQ_REAL_W_NW % Real wage inflation

DPQ_W_NW % Wage inflation

DPQ_Y_NW % Output growth

DSA_NW % Stochastic discount factor

GAMMAPRIME _U_NW % Marginal cost of utilizing the capital
GAMMA_U_NW % Cost of utilize the capital

GAMMA_W_NW % Wage adjustment cost

I_NW % Investment

K_NW % Capital

KBAR_NW %, Utilized capital

KNEW_NW 7, Capital goods produced each period

L_NW % Hours worked

MC_NW % Marginal cost

MRS_NW 7% Marginal rate of substitution

NAT_Y_NW % Output

PSI_NW % Competition in the labor market shock process
Q_NW % Demand for intermediate goods

REAL_PI_NW % Real price of investment

REAL_PK_NW 7 Real price of capital

REAL_PQ_NW % Real intermediate goods price

REAL_W_NW % Real wage rate

RHO_NW % Discount factor shock process

RK_NW 7 Rental rate of capital

RN3M_NW 7, Money market interest rate

S_NW % Investment adjustment cost function

S_PRIME1_NW % Derivative of the investment

% adjustment cost function with respect to first input times I_NW
S_PRIME2_NW %, Derivative of the investment

% adjustment cost function with respect to second input times I_NW
T_NW % Intermediate goods production

THETAH_NW % Price markup shock process

U_NW % Utilization rate

UPRIME_NW % Derivative of the utility function

% of households wrt consumption

VPRIME_NW % Derivative of the utility function

% of households wrt labor

Y_I_NW % Input to investment production

Z_I_NW % Marginal efficiency of investment shock process
Z_L_NW % Temporary labor augmenting technology shock process
Z_RN3M_NW % Monetary policy shock process
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Z_U_NW % Consumption preference shock process

exogenous

E_DUT_NW % Investment-specific technological innovation
E_DZT_NW % Permanent labor-augmenting technology innovation
E_I_NW % Marginal efficiency of investment innovation
E_L_NW % Temporary labor augmenting technology innovation
E_PSI_NW % Competition in the labor market innovation
E_RHO_NW % Discount factor innovation

E_RN3M_NW % Monetary policy innovation

E_THETAH_NW % Price markup innovation

E_U_NW % Consumption preference innovation

parameters

ALPHA_NW % Capital share

BC_NW % Habit in consumption

BETA_NW % Discount factor

BL_NW % Habit in hours worked

DELTA_NW % Depreciation rate

DPQ_P_NW_SS % Steady-state inflation

DUT_NW_SS ’ Steady-state growth rate in investment-

% specific technology

DZT_NW_SS % Steady-state growth rate in labor-

% augmenting technology

LAMBDA_DUT_NW % Shock persistent parameter

% for the investment-specific technology shock
LAMBDA_DZT_NW % Shock persistent parameter

% for the labor-augmenting technology shock
LAMBDA_I_NW % Shock persistent parameter

% for the marginal efficiency of investment shock
LAMBDA_L_NW % Shock persistent parameter

% for the temporary labor augmenting technology shock
LAMBDA_PSI_NW % Shock persistent parameter

% for the competition in the labor market shock
LAMBDA_RHO_NW % Shock persistent parameter

% for the discount factor shock

LAMBDA_RN3M_NW % Shock persistent parameter

% for the monetary policy shock

LAMBDA_U_NW % Shock persistent parameter

% for the price markup shock

LAMBDA_THETAH_NW % Shock persistent parameter

% for the consumption preference shock

OMEGA_Y_NW % Taylor rule coefficient on ouput gap.
OMEGA_DPQ_Y_NW % Taylor rule coefficient on ouput growth gap.
OMEGA_P_NW % Taylor rule coefficient on inflation gap.
OMEGA_R_NW % Interest rate smoothing in the taylor rule
PHI_PQ_NW % Intermediate goods price adjustment cost parameter
PHI_T1_NW % Investment adjustment cost parameter
PHI_W_NW J Wage adjustment cost parameter

PHI_U_NW % Capital utilization cost parameter
PSI_NW_SS % Steady-state elasticity of substitution

% between differentiated labor
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RHO_NW_SS % Discount factor shock process in steady state
THETAH_NW_SS % Steady-state elasticity of

% substitution between intermidate goods
ZETA_NW %, Inverse Frisch elasticity
Z_I_NW_SS % Marginal efficiency of investment
% shock in steady-state

Z_L_NW_SS 7% Temporary labor augmenting technology
% shock in steady-state

Z_RN3M_NW_SS % Monetary policy shock in

% steady-state

Z_U_NW_SS Y’ Consumption preference shock in
% steady-state

std_E_DUT_NW % Standard deviation of the

% innovation to the Z_DUT_NW shock process
std_E_DZT_NW % Standard deviation of the

% innovation to the Z_DZT_NW shock process
std_E_I_NW % Standard deviation of the

% innovation to the Z_I_NW shock process
std_E_L_NW % Standard deviation of the

% innovation to the Z_L_NW shock process
std_E_PSI_NW % Standard deviation of the

% innovation to the PSI_NW shock process
std_E_RHO_NW % Standard deviation of the

% innovation to the RHO_NW shock process
std_E_RN3M_NW J Standard deviation of the

% innovation to the Z_RN3M_NW shock process
std_E_THETAH_NW 7, Standard deviation of the

% innovation to the THETAH_NW shock process
std_E_U_NW % Standard deviation of the

% innovation to the Z_U_NW shock process

unitrootvars
Z
UPSILON

model

% 1) Final goods sector

% Production function (A_NW)
A_NW = Q_NW;

% FOC (Q_NW)
REAL_PQ_NW = 1;

% 2) Intermediate goods sector
% Intermidate production function (KBAR_NW)
T_NW = (Z*Z_L_NW*L_NW) "~ (1-ALPHA_NW)*KBAR_NW~ALPHA_NW;

% Optimality condition wrt utilized capital (I.e. demand function) (MC_NW)
KBAR_NW = ALPHA_NW* (MC_NW/RK_NW)*T_NW;

% Optimality condition wrt aggregated labor (I.e. demand function) (L_NW)
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L_NW = (1 - ALPHA_NW)x*(MC_NW/REAL_W_NW)*T_NW;

% Pricing (REAL_PQ_NW)

Q_NW - THETAH_NW*Q_NW + MC_NW*THETAH_NW*Q_NW/REAL_PQ_NW
- 100+PHI_PQ_NWx (DPQ_PQ_NW/DPQ_PQ_NW(-1) - 1)*DPQ_PQ_NW/DPQ_PQ_NW(-1)*Q_NW
+ DSA_NWx100*PHI_PQ_NWx*(DPQ_PQ_NW(+1)/DPQ_PQ_NW - 1)
*DPQ_PQ_NW(+1)~2/DPQ_PQ_NW*Q_NW(+1) = 0;

% 3) Investment producer
% Investment production function (Y_I_NW)
I_NW = UPSILON*Y_I_NW;

% First order condition for investment (REAL_PI_NW)
UPSILON*REAL_PI_NW = 1;

% 4) Capital producer
% Capital production function (KNEW_NW)
KNEW_NW = Z_I_NW*(1 - S_NW)*I_NW;

% Investment adjustment cost function (S_NW)
S_NW = (PHI_I1_NW/2)*(I_NW/I_NW(-1) - bgp(I_NW))~2;

% Derivative of the investment adjustment cost function with respect to first input
% (Multiplied by I_NW!) (S_PRIME1_NW)
S_PRIME1_NW = PHI_I1_NW*(I_NW/I_NW(-1) - bgp(I_NW))*I_NW/I_NW(-1);

% Derivative of the investment adjustment cost function with respect to second input
% (Multiplied by I_NW!) (S_PRIME2_NW)
S_PRIME2_NW = -PHI_T1_NWx(I_NW/I_NW(-1) - bgp(I_NW))*(I_NW/I_NW(-1))"2;

% Optimal capital investment (I_NW)
0 = DSA_NW*REAL_PK_NW(+1)*Z_I_NW(+1)*S_PRIME2_NW(+1)
+ REAL_PK_NW*Z_I_NW*(1 - S_NW - S_PRIME1_NW) - REAL_PI_NW;

% 5) Households
% Marignal wutility of consumption (UPRIME_NW)
UPRIME_NW = Z_U_NWx((C_NW - C_NW(-1)*BC_NW)/(1 - BC_NW/bgp(C_NW)))~(-1) ;

% Marginal wutility of labor labor (VPRIME_NW)
VPRIME_NW = ((L_NW - BL_NW*L_NW(-1))/(1-BL_NW))~ZETA_NW ;

% Stochastic discount factor (DSA_NW)
DSA_NW = BETA_NW*RHO_NW(+1)*UPRIME_NW(+1)/(DPQ_P_NW(+1)*RHO_NW*UPRIME_NW) ;

% Consumption euler equation (RN3M_NW)
DSA_NW*RN3M_NW = 1;

% Optimal wage setting (REAL_W_NW)

REAL_W_NW = PSI_NW*MRS_NW/((PSI_NW-1)=*(1-GAMMA_W_NW)
+ 1000*PHI_W_NW*DPQ_W_NW/DPQ_W_NW(-1)*(DPQ_W_NW/DPQ_W_NW(-1) - 1)
- DSA_NW+DPQ_W_NW(+1)*L_NW(+1) /L_NW+1000+PHI_W_NW+DPQ_W_NW(+1)
/DPQ_W_NWx (DPQ_W_NW(+1) /DPQ_W_NW - 1));
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% Wage adjusment cost (GAMMA_W_NW)
GAMMA_W_NW = 1000*PHI_W_NW/2*(DPQ_W_NW/DPQ_W_NW(-1) - 1)"2 ;

% Marginal rate of substitution between consumption and leisure (MRS_NW)
MRS_NW = VPRIME_NW/UPRIME_NW;

% 6) Entrepreneurs

% optimality with respect to capital (REAL_PK_NW)

REAL_PK_NW = DSA_NW*DPQ_P_NW(+1)*( REAL_PK_NW(+1)*(1 - DELTA_NW) +
RK_NW(+1)*U_NW(+1) - GAMMA_U_NW(+1));

% optimality with respect to wutilization (RK_NW)
RK_NW = GAMMAPRIME_U_NW;

% Cost of utilizing the capital (GAMMA_U_NW)
GAMMA_U_NW = steady_state(RK_NW)/PHI_U_NW*(exp(PHI_U_NW+(U_NW - 1)) - 1) ;

% Marginal cost of utilizing capital (GAMMAPRIME_U_NW)
GAMMAPRIME_U_NW = steady_state(RK_NW)x*exp(PHI_U_NWx(U_NW - 1)) ;

% Capital accumulation (K_NW)
K_NW = (1-DELTA_NW)*K_NW(-1) + KNEW_NW;

% Capital utilization (U_NW)
KBAR_NW = U_NW*K_NW(-1);

% 7) Market clearing
% Final good market clearing (C_NW)
A_NW = C_NW + Y_I_NW;

% Intermediate good market clearing (T_NW)
T_NW = Q_NW;

% 8) Definitions
% Definition of natural output

NAT_Y_NW = A_NW;

% Consumption growth (DPQ_C_NW)
DPQ_C_NW = C_NW/C_NW(-1);

% Investment growth (DPQ_I_NW)
DPQ_I_NW = I_NW/I_NW(-1);

% Capital growth (DPQ_K_NW)
DPQ_K_NW = K_NW/K_NW(-1);

% Definition of natural output growth (DPQ_A_NW)
DPQ_Y_NW = NAT_Y_NW/NAT_Y_NW(-1);

% Definition of intermidate good inflation (DPQ_PQ_NW)
DPQ_PQ_NW = DPQ_P_NW+REAL_PQ_NW/REAL_PQ_NW(-1);
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% Real investment inflation (DPQ_REAL_PI_NW)
DPQ_REAL_PI_NW = REAL_PI_NW/REAL_PI_NW(-1);

% Real wage inflation (DPQ_REAL_W_NW)
DPQ_REAL_W_NW = REAL_W_NW/REAL_W_NW(-1);

% Definition of wage inflation (DPQ_W_NW)
DPQ_W_NW = REAL_W_NW/REAL_W_NW(-1)*DPQ_P_NW;

% 9) Taylor rule (DPQ_P_NW)
RN3M_NW = RN3M_NW(-1) “OMEGA_R_NW*(steady_state (RN3M_NW)
* (DPQ_P_NW/steady_state (DPQ_P_NW)) ~OMEGA_P_NW
* (NAT_Y_NW/steady_state (NAT_Y_NW)) ~OMEGA_Y_NW
*(DPQ_Y_NW/steady_state (DPQ_Y_NW)) ~OMEGA_DPQ_Y_NW)
~(1-0MEGA_R_NW) * (Z_RN3M_NW/steady_state (Z_RN3M_NW)) ;
[static] DPQ_P_NW = DPQ_P_NW_SS;

% 10) Shock processes

% Labor market competition shock (PSI_NW)

log(PSI_NW) = (1-LAMBDA_PSI_NW)*log(PSI_NW_SS) +
LAMBDA_PSI_NW*log(PSI_NW(-1)) + E_PSI_NW*std_E_PSI_NW ;

% Discount factor shock (RHO_NW)
log(RHO_NW) = (1-LAMBDA_RHO_NW)#*log(RHO_NW_SS) +
LAMBDA_RHU_NW*log(RHO_NW(—l)) + E_RHO_NW*std_E_RHO_NW ;

% Price markup shock (THETAH_NW)

log(THETAH_NW) = (1-LAMBDA_THETAH_NW)*log(THETAH_NW_SS)
+ LAMBDA_THETAH_NW*log(THETAH_NW(-1))
+ E_THETAH_NW*std_E_THETAH_NW ;

% Marginal efficiency of investment shock (Z_I_NW)
log(Z_I_NW) = (1-LAMBDA_I_NW)*log(Z_I_NW_SS)
+ LAMBDA_I_NWxlog(Z_I_NW(-1)) + E_I_NW#std_E_I_NW ;

% Temporary labor augmenting technology shock (Z_L_NW)
log(Z_L_NW) = (1-LAMBDA_L_NW)*log(Z_L_NW_SS)
+ LAMBDA_L_NW*log(Z_L_NW(-1)) + E_L_NWxstd_E_L_NW ;

% Consumption preference shock (Z_U_NW)
log(Z_U_NW) = (1-LAMBDA_U_NW)*log(Z_U_NW_SS)
+ LAMBDA_U_NW*log(Z_U_NW(-1)) + E_U_NW*std_E_U_NW ;

% Monetary policy shock (Z_RN3M_NW)
log(Z_RN3M_NW) = (1-LAMBDA_RN3M_NW)=*log(Z_RN3M_NW_SS) +
LAMBDA_RN3M_NWxlog(Z_RN3M_NW(-1)) + E_RN3M_NW*std_E_RN3M_NW;

% Unit root processes

Z/7(-1) = DZT_NW_SS~(1-LAMBDA_DZT_NW) *
(Z(-1)/Z(-2)) "LAMBDA_DZT_NW+*exp (std_E_DZT_NW*E_DZT_NW) ;
UPSILON/UPSILON(-1) = DUT_NW_SS~(1-LAMBDA_DUT_NW) *
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(UPSILON(-1) /UPSILON(-2)) ~LAMBDA_DUT_NW*exp(std_E_DUT_NW+E_DUT_NW) ;

% Construct reported variables that can be asked for in IRFs, but

% are not part of the model. Here you can use all MATLAB functions
% that act on a double vector, and returns an output with the same
% size as the input.

report

ing

C_NW_LEVEL = exp(cumsum(log(DPQ_C_NW) - log(steady_state(DPQ_C_NW))));

I_NW_LEVEL
K_NW_LEVEL
Y_NW_LEVEL

exp (cumsum(log (DPQ_I_NW)
exp (cumsum(log (DPQ_K_NW) - log(steady_state(DPQ_K_NW))));
exp (cumsum(log (DPQ_Y_NW)

log(steady_state(DPQ_I_NW))));

log(steady_state(DPQ_Y_NW))));

The set of NB toolbox commands to transform and solve the model:

o

% Read the non-stationary model

modelNS = nb_dsge('nb_file', 'Jjpt_non_stationary.nb');

o

% Give it a name

modelNS = set (modelNS, 'name', 'Stationarize JPT automatically');
% Set the parameters
param = struct();
param.ALPHA_ NW 0.167;
param.BC_NW 0.859;
param.BETA_NW 100/(0.134+100);
param.BL_NW 0;
param.DELTA_NW 0.025;
param.DPQ_P_NW_SS (0.702 4+ 100)/100;
param.DUT_NW_SS 1 4+ (0.597/100);
param.DZT_NW_SS 1 + (0.303 - (param.ALPHA_NW/...
(1 - param.ALPHA_NW))*0.597)/100;
param.LAMBDA_DUT_NW 0.156;
param.LAMBDA_DZT_NW 0.286;
param.LAMBDA_I_NW 0.772;
param.LAMBDA_L_NW 0;
param.LAMBDA_PSI_NW 0.967;
param.LAMBDA_RHO_NW 0.590;
param.LAMBDA_RN3M_NW 0;
param.LAMBDA_U_NW 0;
param.LAMBDA_THETAH_NW 0.971;
param.OMEGA_DPQ_Y_NW 0.208;
param.OMEGA_P_NW 1.709;
param.OMEGA_R_NW 0.858;
param.OMEGA_Y_NW 0.051;
param.PHI_PQ_NW 0.2;
param.PHI_T1_NW 2.657;
param.PHI_W_NW 1.0080;
param.PHI_U_NW 5.434;
param.PSI_NW_SS 1.135/(1.135 - 1);
param.RHO_NW_SS 1;
param.THETAH_NW_SS 1.171/(1.171 - 1);
param.ZETA_NW 4.444;
param.Z_I_NW_SS = 1;
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param.Z_L_NW_SS =
param.Z_U_NW_SS =
param.Z_RN3M_NW_SS =

’

’

[ =

’

param.std_E_DUT_NW = 0.630;

param.std_E_DZT_NW = 0.933;

param.std_E_TI_NW = 5.103;

param.std_E_L_NW = 0;

param.std_E_PSI_NW = 0.310;

param.std_E_RHO_NW = 0.036;

param.std_E_RN3M_NW = 0.210;

param.std_E_THETAH_NW = 0.219;

param.std_E_U_NW = 0;

modelNS = assignParameters (modelNS, param) ;

o)

% Solve for the balanced growth path (steps 1-3 of the algorithm)
modelNS = solveBalancedGrowthPath (modelNS) ;

% Stationarize the model (step 4 of the algorithm)

modelNS = stationarize (modelNS)

)

% Solve stationary steady state (numerically)
modelNS = checkSteadyState (modelNS, ...
'solver', 'fsolve', ...
'steady_state_solve', true, ...
'steady_state_default', @ones);

% Return the steady state solution as a cell matrix
ss = getSteadyState (modelNS)

% Return the solution to the balanced growth path as a cell matrix
bgp = getBalancedGrowthPath (modelNS)

Obtain the state space representation of the solution
y(t) = A y(t-1) + B eps(t)
modelNS = solve (modelNS) ;

o° o

Compute and plot impulse responses
The modelS object represents the model that we have stationarized manually.
~,~,plotter] = irf ([modelNS,modelS], 'periods’', 60, 'plotss', true, 'shocks',
{'"E_DUT_NW'}, ...
'variables', {'C_NW', 'DPQ P _NW', 'DPQ W _NW', 'I_NW', 'K_NW', ...
'"L_NW', "NAT_Y_NW', "RN3M_NW'}, ...
'settings’', {'legBox"', 'off', 'legFontSize',18, "'subPlotSize', [3,3], ...
'figureTitle', false, 'lookUpMatrix', 'lookUpMatrixJPT"', ...
'legends', {'Stationarize JPT automatically', ...

'Stationarize JPT manually', ...
L]

— o° o°

yoe e .

'Steady state'}});
nb_graphInfoStructGUI (plotter)

F The automatically made stationary file

endogenous
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Z_U_NW Z_RN3M_NW Z_L_NW Z_I_NW Y_I_NW VPRIME_NW U_NW UPRIME_NW T_NW
THETAH_NW S_PRIME2_NW S_PRIME1_NW S_NW RN3M_NW RK_NW RHO_NW REAL_W_NW
REAL_PQ_NW REAL_PK_NW REAL_PI_NW Q_NW PSI_NW NAT_Y_NW MRS_NW MC_NW

L_NW K_NW KNEW_NW KBAR_NW I_NW GAMMA_W_NW GAMMA_U_NW GAMMAPRIME_U_NW

D_Z_Z D_Z_Y_I_NW D_Z_UPSILON D_Z_UPRIME_NW D_Z_T_NW D_Z_RK_NW D_Z_REAL_W_NW
D_Z_REAL_PK_NW D_Z_REAL_PI_NW D_Z_Q_NW D_Z_NAT_Y_NW D_Z_MRS_NW D_Z_K_NW
Z_KNEW_NW D_Z_KBAR_NW D_Z_TI_NW D_Z_GAMMA_U_NW D_Z_GAMMAPRIME_U_NW

C_NW D_Z_A_NW DSA_NW DPQ_Y_NW DPQ_W_NW DPQ_REAL_W_NW DPQ_REAL_PI_NW

D_
D_Z_
DPQ_P_NW DPQ_PQ_NW DPQ_K_NW DPQ_I_NW DPQ_C_NW C_NW A_NW

exogenous
E_DUT_NW E_DZT_NW E_I_NW E_L_NW E_PSI_NW E_RHO_NW E_RN3M_NW E_THETAH_NW
E_U_NW

parameters

std_E_U_NW std_E_THETAH_NW std_E_RN3M_NW std_E_RHO_NW std_E_PSI_NW
std_E_L_NW std_E_I_NW std_E_DZT_NW std_E_DUT_NW Z_U_NW_SS Z_RN3M_NW_SS
Z_L_NW_SS Z_I_NW_SS ZETA_NW THETAH_NW_SS RHO_NW_SS PSI_NW_SS PHI_W_NW
PHI_U_NW PHI_PQ_NW PHI_I1_NW OMEGA_Y_NW OMEGA_R_NW OMEGA_P_NW OMEGA_DPQ_Y_NW
LAMBDA_U_NW LAMBDA_THETAH_NW LAMBDA_RN3M_NW LAMBDA_RHO_NW LAMBDA_PSI_NW
LAMBDA_L_NW LAMBDA_I_NW LAMBDA_DZT_NW LAMBDA_DUT_NW DZT_NW_SS DUT_NW_SS

DPQ_P_NW_SS DELTA_NW BL_NW BETA_NW BC_NW ALPHA_NW

model

A_NW-Q_NW;

REAL_PQ_NW-1;

T_NW = (((1*Z_L_NW)*L_NW)~ (1-ALPHA_NW) ) * (KBAR_NW~ALPHA_NW) ;
KBAR_NW = (ALPHA_NW* (MC_NW/RK_NW))*T_NW;

L_NW = ((1-ALPHA_NW)*(MC_NW/REAL_W_NW))*T_NW;

Q_NW- (THETAH_NW*Q_NW) +( (MC_NW+THETAH_NW) *Q_NW) /REAL_PQ_NW-
(((((LOO*PHI_PQ_NW)*(DPQ_PQ_NW/DPQ_PQ_NW(-1)-1))*DPQ_PQ_NW) /DPQ_PQ_NW(-1))*Q_NW)+
(((((DSA_NW*100) *PHI_PQ_NW)* (DPQ_PQ_NW(+1) /DPQ_PQ_NW-1))

* (DPQ_PQ_NW(+1)~2))/DPQ_PQ_NW)* (Q_NW(+1)*D_Z_Q_NW(+1))-0;

I_NW = 1%Y_I_NW;

1*REAL_PI_NW-1;

KNEW_NW = (Z_I_NWx(1-S_NW))*I_NW;

S_NW = (PHI_I1_NW/2)*((I_NW/(I_NW(-1)*D_Z_I_NW~-1)-
steady_state(D_Z_I_NW))~2);

S_PRIME1_NW = ((PHI_I1_NW*(I_NW/(I_NW(-1)*D_Z_I_NW~-1)-
steady_state(D_Z_I_NW)))*I_NW)/(I_NW(-1)*D_Z_I_NW~-1);
S_PRIME2_NW = ((-PHI_TI1_NW)*(I_NW/(I_NW(-1)*D_Z_I_NW~-1)-
steady_state(D_Z_I_NW)))* ((I_NW/(I_NW(-1)*D_Z_I_NW~-1))"2);

0 = ((DSA_NW*(REAL_PK_NW(+1)*D_Z_REAL_PK_NW(+1)))*Z_I_NW(+1))*
S_PRIME2_NW(+1)+(REAL_PK_NW+Z_I_NW)*(1-S_NW-S_PRIME1_NW)-REAL_PI_NW;
UPRIME_NW = Z_U_NW*(((C_NW-((C_NW(-1)*D_Z_C_NW~-1)*BC_NW))/

(1-(BC_NW/steady_state(D_Z_C_NW))))~(-1));

VPRIME_NW = ((L_NW-(BL_NW*L_NW(-1)))/(1-BL_NW))~ZETA_NW;

DSA_NW = ((BETA_NW*RHO_NW(+1))* (UPRIME_NW(+1)*D_Z_UPRIME_NW(+1)))/
((DPQ_P_NW(+1) *RHO_NW) *UPRIME_NW) ;

DSA_NW+RN3M_NW-1;

REAL_W_NW = (PSI_NW*MRS_NW)/((PSI_NW-1)*(1-GAMMA_W_NW)+
(((1000*PHI_W_NW)*DPQ_W_NW) /DPQ_W_NW(-1)) * (DPQ_W_NW/DPQ_W_NW(-1)-1)-
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(CCCCCC(DSA_NW*DPQ_W_NW(+1) ) *L_NW(+1)) /L_NW) *1000) *PHI _W_NW) *DPQ_W_NW(+1) )/
DPQ_W_NW) * (DPQ_W_NW(+1) /DPQ_W_NW-1)));

GAMMA_W_NW = ((1000%PHI_W_NW)/2)*((DPQ_W_NW/DPQ_W_NW(-1)-1)"2);

MRS_NW = VPRIME_NW/UPRIME_NW;

REAL_PK_NW = (DSA_NW+DPQ_P_NW(+1))*((REAL_PK_NW(+1)*D_Z_REAL_PK_NW(+1))*(1-DELTA_NW)+
(RK_NW(+1)*D_Z_RK_NW (+1) ) *U_NW(+1) - (GAMMA_U_NW(+1)*D_Z_GAMMA_U_NW(+1)));
RK_NW-GAMMAPRIME_U_NW;

GAMMA_U_NW = (steady_state (RK_NW)/PHI_U_NW)* (exp (PHI_U_NW*(U_NW-1))-1);
GAMMAPRIME_U_NW = steady_state (RK_NW)* (exp(PHI_U_NWx(U_NW-1)));

K_NW = (1-DELTA_NW)*(K_NW(-1)*D_Z_K_NW~-1)+KNEW_NW;

KBAR_NW = U_NW*(K_NW(-1)*D_Z_K_NW~-1);

A_NW = C_NW+Y_I_NW;

T_NW-Q_NW;

NAT_Y_NW-A_NW;

DPQ_C_NW = C_NW/(C_NW(-1)*D_Z_C_NW~-1);

DPQ_I_NW = I_NW/(I_NW(-1)*D_Z_I_NW~-1);

DPQ_Y_NW = NAT_Y_NW/(NAT_Y_NW(-1)*D_Z_NAT_Y_NW~-1);

DPQ_PQ_NW = (DPQ_P_NW+REAL_PQ_NW)/REAL_PQ_NW(-1);

DPQ_REAL_PI_NW = REAL_PI_NW/(REAL_PI_NW(-1)*D_Z_REAL_PI_NW~-1);
DPQ_REAL_W_NW = REAL_W_NW/(REAL_W_NW(-1)*D_Z_REAL_W_NW~-1);

DPQ_W_NW = (REAL_W_NW/(REAL_W_NW(-1)*D_Z_REAL_W_NW~-1))*DPQ_P_NW;

RN3M_NW = ((RN3M_NW(-1)~0OMEGA_R_NW) * ((((steady_state (RN3M_NW)*
((DPQ_P_NW/steady_state (DPQ_P_NW)) ~OMEGA_P_NW) ) *
((NAT_Y_NW/steady_state (NAT_Y_NW)) ~OMEGA_Y_NW) ) *
((DPQ_Y_NW/steady_state(DPQ_Y_NW)) ~OMEGA_DPQ_Y_NW) )~ (1-OMEGA_R_NW))) *
(Z_RN3M_NW/steady_state(Z_RN3M_NW)) ;

[static] DPQ_P_NW = DPQ_P_NW_SS;

log(PSI_NW) = (1-LAMBDA_PSI_NW)*log(PSI_NW_SS)+LAMBDA_PSI_NW*log(PSI_NW(-1))+
E_PSI_NW#std_E_PSI_NW;

log(RHO_NW) = (1-LAMBDA_RHO_NW)*log(RHO_NW_SS)+LAMBDA_RHO_NW*log (RHO_NW(-1))+
E_RHO_NW+*std_E_RHO_NW;

log(THETAH_NW) = (1-LAMBDA_THETAH_NW)*log(THETAH_NW_SS)+
LAMBDA_THETAH_NWxlog(THETAH_NW(-1))+ E_THETAH_NW+std_E_THETAH_NW;
log(Z_I_NW) = (1-LAMBDA_I_NW)#*log(Z_I_NW_SS)+LAMBDA_I_NWxlog(Z_I_NW(-1))+
E_I_NWxstd_E_I_NW;

log(Z_L_NW) = (1-LAMBDA_L_NW)*log(Z_L_NW_SS)+LAMBDA_L_NW#log(Z_L_NW(-1))+
E_L_NWxstd_E_L_NW;

log(Z_U_NW) = (1-LAMBDA_U_NW)*log(Z_U_NW_SS)+LAMBDA_U_NW*log(Z_U_NW(-1))+
E_U_NWxstd_E_U_NW;

log(Z_RN3M_NW) = (1-LAMBDA_RN3M_NW)*log(Z_RN3M_NW_SS)+
LAMBDA_RN3M_NW1log(Z_RN3M_NW(-1))+

E_RN3M_NW*std_E_RN3M_NW;

The unit root processes are specified as:

1/(1%D_Z_Z~-1) = ((DZT_NW_SS~(1-LAMBDA_DZT_NW))*
(((1*D_Z_Z~-1)/(1%¥D_Z_Z~-1%D_Z_Z(-1)~-1)) "LAMBDA_DZT_NW) ) *
(exp(std_E_DZT_NWxE_DZT_NW)) ;

1/(1%D_Z_UPSILON~-1) = ((DUT_NW_SS~(1-LAMBDA_DUT_NW))*
(((1*D_Z_UPSILON~-1)/(1%D_Z_UPSILON~-1*D_Z_UPSILON(-1)~-1))~LAMBDA_DUT_NW))*
(exp(std_E_DUT_NW+E_DUT_NW)) ;

The identified G* functions are:
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log(D_Z_A_NW)-log(D_Z_Q_NW);

ALPHA_NW*log(D_Z_Z)+1log(D_Z_T_NW)-ALPHA_NWxlog(D_Z_KBAR_NW)-log(D_Z_Z);
log(D_Z_KBAR_NW)+log(D_Z_RK_NW)-log(D_Z_T_NW) ;
log(D_Z_REAL_W_NW)-log(D_Z_T_NW);

log(D_Z_I_NW)-log(D_Z_UPSILON)-log(D_Z_Y_I_NW);
log(D_Z_REAL_PI_NW)+log(D_Z_UPSILON) ;
log(D_Z_KNEW_NW)-log(D_Z_I_NW);
log(D_Z_REAL_PK_NW)-log(D_Z_REAL_PI_NW);
log(D_Z_C_NW)+log(D_Z_UPRIME_NW) ;
log(D_Z_REAL_W_NW)-log(D_Z_MRS_NW) ;
log(D_Z_MRS_NW)+log(D_Z_UPRIME_NW) ;
log(D_Z_REAL_PK_NW)-log(D_Z_RK_NW);
log(D_Z_REAL_PK_NW)-log(D_Z_GAMMA_U_NW) ;
log(D_Z_RK_NW)-log(D_Z_GAMMAPRIME_U_NW);
log(D_Z_K_NW)-log(D_Z_KNEW_NW) ;
log(D_Z_KBAR_NW)-1log(D_Z_K_NW) ;
log(D_Z_A_NW)-log(D_Z_C_NW);

log(D_Z_NAT_Y_NW)-log(D_Z_A_NW);

Finally the reporting:

reporting
C_NW_LEVEL = exp(cumsum(log(DPQ_C_NW) - log(steady_state(DPQ_C_NW))));
I_NW_LEVEL = exp(cumsum(log(DPQ_I_NW) - log(steady_state(DPQ_I_NW))));
K_NW_LEVEL = exp(cumsum(log(DPQ_K_NW) - log(steady_state(DPQ_K_NW))));

Y_NW_LEVEL = exp(cumsum(log(DPQ_Y_NW) - log(steady_state(DPQ_Y_NW))));

G JPT model with unit root in preferences

The steps are the same as in the main paper. First, we write the equations of the (non-stationary) model

to a file and save it with name jpt non stationary pref.nb. The non-stationary model file is in this case

endogenous

A_NW % Final goods production

C_NW % Consumption

DPQ_C_NW % Consumption growth

DPQ_I_NW % Investment growth

DPQ_K_NW % Investment growth

DPQ_P_NW % Inflation

DPQ_PQ_NW % Intermidate goods inflation
DPQ_REAL_PI_NW % Real investment inflation
DPQ_REAL_W_NW % Real wage inflation
DPQ_W_NW % Wage inflation

DPQ_Y_NW % Output growth

DSA_NW % Stochastic discount factor
GAMMAPRIME _U_NW % Marginal cost of utilizing the capital
GAMMA_U_NW % Cost of utilize the capital
GAMMA_W_NW % Wage adjustment cost

I_NW % Investment

K_NW % Capital

KBAR_NW %, Utilized capital
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KNEW_NW 7, Capital goods produced each period

L_NW % Hours worked

MC_NW % Marginal cost

MRS_NW 7 Marginal rate of substitution

NAT_Y_NW % Output

PSI_NW % Competition in the labor market shock process

Q_NW % Demand for intermediate goods

REAL_PI_NW % Real price of investment

REAL_PK_NW % Real price of capital

REAL_PQ_NW % Real intermediate goods price

REAL_W_NW % Real wage rate

RHO_NW % Discount factor shock process

RK_NW 7% Rental rate of capital

RN3M_NW % Money market interest rate

S_NW % Investment adjustment cost function

S_PRIME1_NW % Derivative of the investment adjustment cost

% function wrt 1st input times I_NW

S_PRIME2_NW % Derivative of the investment adjustment cost

% function wrt 2nd input times I_NW

T_NW % Intermediate goods production

THETAH_NW 7% Price markup shock process

U_NW % Utilization rate

UPRIME_NW % Derivative of the utility function of households wrt consumption
VPRIME_NW % Derivative of the utility function of households wrt labor
Y_I_NW % Input to investment production

Z_I_NW % Marginal efficiency of investment shock process
Z_L_NW % Temporary labor augmenting technology shock process
Z_RN3M_NW % Monetary policy shock process

Z_U_NW % Consumption preference shock process

exogenous

E_DXT_NW 7 Preference innovation

E_DZT_NW J Permanent labor-augmenting technology innovation
E_I_NW % Marginal efficiency of investment innovation
E_L_NW % Temporary labor augmenting technology innovation
E_PSI_NW % Competition in the labor market innovation
E_RHO_NW % Discount factor innovation

E_RN3M_NW % Monetary policy innovation

E_THETAH_NW % Price markup innovation

E_U_NW % Consumption preference innovation

parameters

ALPHA_NW % Capital share

BC_NW % Habit in consumption

BETA_NW % Discount factor

BL_NW % Habit in hours worked

DELTA_NW % Depreciation rate

DPQ_P_NW_SS % Steady-state inflation

DXT_NW_SS % Steady-state growth rate in preference

DZT_NW_SS % Steady-state growth rate in labor-augmenting technology
LAMBDA_DXT_NW % Shock persistent parameter for the preference shock
LAMBDA_DZT_NW % Shock persistent parameter for the labor-augmenting
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% technology shock

LAMBDA_I_NW % Shock persistent parameter for the marginal efficiency
% of investment shock

LAMBDA_L_NW % Shock persistent parameter for the temporary labor
% augmenting technology shock

LAMBDA_PSI_NW % Shock persistent parameter for the competition
% in the labor market shock

LAMBDA_RHO_NW % Shock persistent parameter for the discount

% factor shock

LAMBDA_RN3M_NW % Shock persistent parameter for the monetary

% policy shock

LAMBDA_U_NW % Shock persistent parameter for the price

% markup shock

LAMBDA_THETAH_NW % Shock persistent parameter for the consumption
% preference shock

OMEGA_Y_NW % Taylor rule coefficient on ouput gap.
OMEGA_DPQ_Y_NW % Taylor rule coefficient on ouput growth gap.
OMEGA_P_NW % Taylor rule coefficient on inflation gap.
OMEGA_R_NW % Interest rate smoothing in the taylor rule
PHI_PQ_NW % Intermediate goods price adjustment cost parameter
PHI_T1_NW % Investment adjustment cost parameter

PHI_W_NW 7 Wage adjustment cost parameter

PHI_U_NW % Capital utilization cost parameter

PSI_NW_SS % Steady-state elasticity of substitution between

% differentiated labor

RHO_NW_SS 7% Discount factor shock process in steady state
THETAH_NW_SS 7, Steady-state elasticity of substitution between
% intermidate goods

ZETA_NW %, Inverse Frisch elasticity

Z_I_NW_SS % Marginal efficiency of investment shock in

% steady state

Z_L_NW_SS % Temporary labor augmenting technology shock in

% steady state

Z_RN3M_NW_SS 7% Monetary policy shock in steady state

Z_U_NW_SS 7% Consumption preference shock in steady state
std_E_DXT_NW % Standard deviation of the innovation to the

% Z_DXT_NW shock process

std_E_DZT_NW % Standard deviation of the innovation to the

% Z_DZT_NW shock process

std_E_I_NW % Standard deviation of the innovation to the

% Z_I_NW shock process

std_E_L_NW % Standard deviation of the innovation to the

% Z_L_NW shock process

std_E_PSI_NW % Standard deviation of the innovation to the

% PSI_NW shock process

std_E_RHO_NW % Standard deviation of the innovation to the

% RHO_NW shock process

std_E_RN3M_NW 7, Standard deviation of the innovation to the

% Z_RN3M_NW shock process

std_E_THETAH_NW 7, Standard deviation of the innovation to the
% THETAH_NW shock process

std_E_U_NW % Standard deviation of the innovation to the

60



% Z_U_NW shock process

unitrootvars
Z
X

model

% 1) Final goods sector

% Production function (A_NW)
A_NW = Q_NW;

% FOC (Q_NW)
REAL_PQ_NW = 1;

% 2) Intermediate goods sector
% Intermidate production function (KBAR_NW)
T_NW = (Z*Z_L_NW*L_NW)~(1-ALPHA_NW)*KBAR_NW~ALPHA_NW;

% Optimality condition wrt utilized capital (I.e. demand function) (MC_NW)
KBAR_NW = ALPHA_NW+*(MC_NW/RK_NW) *T_NW;

% Optimality condition wrt aggregated labor (I.e. demand function) (L_NW)
L_NW = (1 - ALPHA_NW)* (MC_NW/REAL_W_NW)*T_NW;

% Pricing (REAL_PQ_NW)

Q_NW - THETAH_NW*Q_NW + MC_NW*THETAH_NW*Q_NW/REAL_PQ_NW
- 100*PHI_PQ_NW* (DPQ_PQ_NW/DPQ_PQ_NW(-1) - 1)*DPQ_PQ_NW/DPQ_PQ_NW(-1)*Q_NW
+ DSA_NWx100*PHI_PQ_NW* (DPQ_PQ_NW(+1)/DPQ_PQ_NW - 1)
*DPQ_PQ_NW(+1)~2/DPQ_PQ_NW*Q_NW(+1) = 0;

% 3) Investment producer
% Investment production function (Y_I_NW)
I_NW = Y_I_NW;

% First order condition for investment (REAL_PI_NW)
REAL_PI_NW = 1;

% 4) Capital producer
% Capital production function (KNEW_NW)
KNEW_NW = Z_I_NW*(1 - S_NW)*I_NW;

% Investment adjustment cost function (S_NW)
S_NW = (PHI_I1_NW/2)*(I_NW/I_NW(-1) - bgp(I_NW))~2;

% Derivative of the investment adjustment cost function with respect to
% first input (Multiplied by I_NW!) (S_PRIME1_NW)
S_PRIME1_NW = PHI_I1_NW*(I_NW/I_NW(-1) - bgp(I_NW))*I_NW/I_NW(-1);

% Derivative of the investment adjustment cost function with respect to

% second input (Multiplied by I_NW!) (S_PRIME2_NW)
S_PRIME2_NW = -PHI_I1_NW*(I_NW/I_NW(-1) - bgp(I_NW))*(I_NW/I_NW(-1))"2;
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% Optimal capital investment (I_NW)
0 = DSA_NW+REAL_PK_NW(+1)*Z_I_NW(+1)*S_PRIME2_NW(+1)
+ REAL_PK_NW*Z_I_NW*(1 - S_NW - S_PRIME1_NW) - REAL_PI_NW;

% 5) Households
% Marignal wutility of consumption (UPRIME_NW)
UPRIME_NW = X*Z_U_NWx((C_NW - C_NW(-1)*BC_NW)/(1 - BC_NW/bgp(C_NW)))~(-1) ;

% Marginal utility of labor labor (VPRIME_NW)
VPRIME_NW = ((L_NW - BL_NW+L_NW(-1))/(1-BL_NW))~ZETA_NW ;

% Stochastic discount factor (DSA_NW)
DSA_NW = BETA_NW*RHO_NW(+1)*UPRIME_NW(+1)/(DPQ_P_NW(+1)*RHO_NW*xUPRIME_NW) ;

% Consumption euler equation (RN3M_NW)
DSA_NW*RN3M_NW = 1;

% Optimal wage setting (REAL_W_NW)

REAL_W_NW = PSI_NW*MRS_NW/((PSI_NW-1)*(1-GAMMA_W_NW)
+ 1000*PHI_W_NW*DPQ_W_NW/DPQ_W_NW(-1)* (DPQ_W_NW/DPQ_W_NW(-1) - 1)
- DSA_NW+DPQ_W_NW(+1) *L_NW(+1) /L_NW*1000*PHI_W_NW*DPQ_W_NW(+1)
/DPQ_W_NW* (DPQ_W_NW(+1) /DPQ_W_NW - 1));

% Wage adjusment cost (GAMMA_W_NW)
GAMMA_W_NW = 1000*PHI_W_NW/2*(DPQ_W_NW/DPQ_W_NW(-1) - 1)"2 ;

% Marginal rate of substitution between consumption and leisure (MRS_NW)
MRS_NW = VPRIME_NW/UPRIME_NW;

% 6) Entrepreneurs

% optimality with respect to capital (REAL_PK_NW)
REAL_PK_NW = DSA_NW*DPQ_P_NW(+1)*( REAL_PK_NW(+1)*(1 - DELTA_NW) +
RK_NW(+1)*U_NW(+1) - GAMMA_U_NW(+1));

% optimality with respect to wutilization (RK_NW)
RK_NW = GAMMAPRIME_U_NW;

% Cost of utilizing the capital (GAMMA_U_NW)
GAMMA_U_NW = steady_state(RK_NW)/PHI_U_NW*(exp(PHI_U_NW*(U_NW - 1)) - 1) ;

% Marginal cost of utilizing capital (GAMMAPRIME_U_NW)
GAMMAPRIME_U_NW = steady_state(RK_NW)x*exp(PHI_U_NWx(U_NW - 1)) ;

% Capital accumulation (K_NW)
K_NW = (1-DELTA_NW)*K_NW(-1) + KNEW_NW;

% Capital utilization (U_NW)
KBAR_NW = U_NW*K_NW(-1);

% 7) Market clearing

% Final good market clearing (C_NW)
A_NW = C_NW + Y_I_NW;
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% Intermediate good market clearing (T_NW)
T_NW = Q_NW;

% 8) Definitions
% Definition of natural output
NAT_Y_NW = A_NW;

% Consumption growth (DPQ_C_NW)
DPQ_C_NW = C_NW/C_NW(-1);

% Investment growth (DPQ_I_NW)
DPQ_I_NW = I_NW/I_NW(-1);

% Capital growth (DPQ_K_NW)
DPQ_K_NW = K_NW/K_NW(-1);

% Definition of natural output growth (DPQ_A_NW)
DPQ_Y_NW = NAT_Y_NW/NAT_Y_NW(-1);

% Definition of intermidate good inflation (DPQ_PQ_NW)
DPQ_PQ_NW = DPQ_P_NW*REAL_PQ_NW/REAL_PQ_NW(-1);

% Real investment inflation (DPQ_REAL_PI_NW)
DPQ_REAL_PI_NW = REAL_PI_NW/REAL_PI_NW(-1);

% Real wage inflation (DPQ_REAL_W_NW)
DPQ_REAL_W_NW = REAL_W_NW/REAL_W_NW(-1);

% Definition of wage inflation (DPQ_W_NW)
DPQ_W_NW = REAL_W_NW/REAL_W_NW(-1)*DPQ_P_NW;

% 9) Taylor rule (DPQ_P_NW)

RN3M_NW = RN3M_NW(-1) “OMEGA_R_NW*(steady_state (RN3M_NW)
* (DPQ_P_NW/steady_state (DPQ_P_NW)) ~OMEGA_P_NW
*(NAT_Y_NW/steady_state (NAT_Y_NW)) ~OMEGA_Y_NW
*(DPQ_Y_NW/steady_state (DPQ_Y_NW)) ~OMEGA_DPQ_Y_NW)
~(1-OMEGA_R_NW) * (Z_RN3M_NW/steady_state (Z_RN3M_NW)) ;

[static] DPQ_P_NW = DPQ_P_NW_SS;

% 10) Shock processes

% Labor market competition shock (PSI_NW)

log(PSI_NW) = (1-LAMBDA_PSI_NW)*log(PSI_NW_SS) +
LAMBDA_PSI_NWxlog(PSI_NW(-1)) + E_PSI_NW*std_E_PSI_NW ;

% Discount factor shock (RHO_NW)
log(RHO_NW) = (1-LAMBDA_RHO_NW)*log(RHO_NW_SS) +
LAMBDA_RHU_NW*log(RHO_NW(—l)) + E_RHO_NW*std_E_RHO_NW ;

% Price markup shock (THETAH_NW)

log (THETAH_NW) = (1-LAMBDA_THETAH_NW)*log(THETAH_NW_SS)
+ LAMBDA_THETAH_NW+*log(THETAH_NW(-1))
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+ E_THETAH_NWxstd_E_THETAH_NW ;

% Marginal efficiency of investment shock (Z_I_NW)
log(Z_I_NW) = (1-LAMBDA_I_NW)*log(Z_I_NW_SS)
+ LAMBDA_I_NW*log(Z_I_NW(-1)) + E_I_NW*std_E_I_NW ;

% Temporary labor augmenting technology shock (Z_L_NW)
log(Z_L_NW) = (1-LAMBDA_L_NW)*log(Z_L_NW_SS)
+ LAMBDA_L_NW*log(Z_L_NW(-1)) + E_L_NW*std_E_L_NW ;

% Consumption preference shock (Z_U_NW)
log(Z_U_NW) = (1-LAMBDA_U_NW)*log(Z_U_NW_SS)
+ LAMBDA_U_NWxlog(Z_U_NW(-1)) + E_U_NWxstd_E_U_NW ;

% Monetary policy shock (Z_RN3M_NW)
log (Z_RN3M_NW) = (1-LAMBDA_RN3M_NW)*1log(Z_RN3M_NW_SS) +
LAMBDA_RN3M_NWxlog(Z_RN3M_NW(-1)) + E_RN3M_NWxstd_E_RN3M_NW;

% Unit root processes
Z/Z(-1) = DZT_NW_SS~(1-LAMBDA_DZT_NW)*(Z(-1)/Z(-2)) "LAMBDA_DZT_NW*exp (std_E_DZT_NW+E_DZT_NW) ;
X/X(-1) = DXT_NW_SS~(1-LAMBDA_DXT_NW)*(X(-1)/X(-2)) LAMBDA_DXT_NWxexp (std_E_DXT_NW*E_DXT_NW) ;

% Construct reported variables that can be asked for in IRFs, but

% are not part of the model. Here you can use all MATLAB functions
% that act on a double vector, and returns an output with the same
% size as the input.

reporting

C_NW_LEVEL = exp(cumsum(log(DPQ_C_NW) - log(steady_state(DPQ_C_NW))));

I_NW_LEVEL = exp(cumsum(log(DPQ_I_NW) - log(steady_state(DPQ_I_NW))));
K_NW_LEVEL = exp(cumsum(log(DPQ_K_NW) - log(steady_state(DPQ_K_NW))));
Y_NW_LEVEL = exp(cumsum(log(DPQ_Y_NW) - log(steady_state(DPQ_Y_NW))));

With this file and the following commands to make the model stationary and compute impulse responses.

o

% Read the non-stationary model
modelNS = nb_dsge('nb_file', 'Jjpt_non_stationary_ pref.nb');

% Give it a name
modelNS = set (modelNS, 'name', 'Stationarize JPT automatically');

[

% Set the parameters

param = struct ();
param.ALPHA_NW = 0.167;
param.BC_NW = 0.859;
param.BETA_NW = 100/(0.134+100);
param.BL_NW = 0;
param.DELTA_NW = 0.025;

param.DPQ_P_NW_SS = (0.702 + 100)/100;

param.DXT_NW_SS =1+ (0.597/100);

param.DZT_NW_SS =1+ (0.303 - (param.ALPHA_NW/...
(1 - param.ALPHA_NW))*0.597)/100;
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param.LAMBDA_DXT_NW = 0.156;

param.LAMBDA_DZT_NW = .286;
param.LAMBDA_TI_NW = 0.772;
param.LAMBDA_L_NW = 0;
param.LAMBDA_PSI_NW = .967;
param.LAMBDA_RHO_NW = 0.590;
param.LAMBDA_RN3M_NW = 0;
param.LAMBDA_U_NW = 0y
param.LAMBDA_THETAH_NW = .971;
param.OMEGA_DPQ_Y_ NW = 0.208;
param.OMEGA_P_NW = 1.709;
param.OMEGA_R_NW = 0.858;
param.OMEGA_Y_NW = 0.051;
param.PHI_PQ NW = 0.2;
param.PHI_TI1_NW = 2.657;
param.PHI_W_NW = 1.0080;
param.PHI_U_NW = 5.434;

param.PSI_NW_SS =
param.RHO_NW_SS =
param.THETAH_NW_SS =

.135/(1.135 - 1);

~

L171/(1.171 - 1) ;

O oo oo ocuUuookr PR REMERERPEUORDNOOOROOOOOOOOOO

param.ZETA_NW = 4.444;
param.Z_I_NW_SS =1,
param.Z_L_NW_SS = 1;
param.Z_U_NW_SS =1,
param.Z_RN3M_NW_SS =1;
param.std_E_DXT_NW = 0.630;
param.std_E_DZT_NW = 0.933;
param.std_E_I_NW = 5.103;
param.std_E_L_NW = 0;
param.std_E_PSI_NW = 0.310;
param.std_E_RHO_NW = .036;
param.std_E_RN3M_NW = 0.210;
param.std_E_THETAH_NW = 0.219;
param.std_E_U_NW = 0;
modelNS = assignParameters (modelNS, param) ;

)

% Solve for the balanced growth path (steps 1-3 of the algorithm)
modelNS = solveBalancedGrowthPath (modelNS) ;

% Stationarize the model (step 4 of the algorithm)

modelNS = stationarize (modelNS)

% Solve stationary steady state (numerically)

modelNS = checkSteadyState (modelNS, ...
'solver', 'fsolve', ...
'steady_state_solve', true, ...
'steady_state_default', Qones);

% Return the steady state solution as a cell matrix
ss = getSteadyState (modelNS)

o)

% Return the solution to the balanced growth path as a cell matrix
bgp = getBalancedGrowthPath (modelNS)

o)

% Write the stationary model to file (optional)
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writeModel2File (modelNS, 'stationarized_pref.nb'")

Obtain the state space representation of the solution
y(t) = A y(t-1) + B eps(t)
modelNS = solve (modelNS) ;

o° o

% compute and plot impulse responses

[~,~,plotter] = irf ([modelNS,modelS], 'periods’, 60, 'plotsSs’', true, 'shocks',
{'E_DXT_NW'}, ...
'variables', {'C_NW', 'DPQ P _NW', 'DPQ W NW','I NW',6 'K _NW', ...

'"L_NW', "NAT_Y NW', '"RN3M_NW'}, ...
'settings', {'legBox"', 'off', 'legFontSize',18, "'subPlotSize', [3,3], ...
'figureTitle', false, 'lookUpMatrix', 'lookUpMatrixJPT', ...
'legends', {'Stationarize JPT automatically', ...
'Stationarize JPT manually', ...

L]
oo

'Steady state'}});
nb_graphInfoStructGUI (plotter)

H Generating results from the JPT model

In the main paper we have calculated the steady state, balanced growth path and moments. In this section

we present the code on how you can calculate these tables using NB toolbox.

%% Parametrization

param = struct();
param.ALPHA_NW = 0.167;
param.BC_NW = 0.859;
param.BETA_NW = 100/(0.134+100);
param.BL_NW = 0;
param.DELTA_NW = 0.025;

param.DPQ_P_NW_SS = (0.702 + 100)/100;

(
param.DUT_NW_SS =1+ (0.597/100);
param.DZT_NW_SS =1+ (0.303 - (param.ALPHA_NW/...
(1 - param.ALPHA_NW))=*0.597)/100;
param.LAMBDA_DUT_NW = 0.156;
param.LAMBDA_DZT_NW = 0.286;
param.LAMBDA_TI_NW = 0.772;
param.LAMBDA_IL_NW = 0;
param.LAMBDA_PSI_NW = 0.967;
param.LAMBDA_RHO_NW = 0.590;
param.LAMBDA_RN3M_NW = 0;
param.LAMBDA_U_NW = 0;
param.LAMBDA_THETAH_NW = 0.971;
param.OMEGA_DPQ_Y_NW = 0.208;
param.OMEGA_P_NW = 1.709;
param.OMEGA_R_NW = 0.858;
param.OMEGA_Y_NW = 0.051;
param.PHI_PQ NW = 0.2;
param.PHI_TI1_NW = 2.657;
param.PHI_W_NW = 1.0080;
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param.PHI_U_NW = 5.434;
param.PSI_NW_SS = 1.135/(1.135 - 1);
param.RHO_NW_SS = 1;
param.THETAH_NW_SS =1.171/(1.171 - 1);
param.ZETA_NW = 4.444;
param.Z_I_NW_SS = 1;

param.Z_L_NW_SS = 1;

param.Z_U_NW_SS = 1;
param.Z_RN3M_NW_SS =1;
param.std_E_DUT_NW = 0.630;
param.std_E_DZT_NW = 0.933;
param.std_E_TI_NW = 5.103;
param.std_E_L_NW = 0;
param.std_E_PSI_NW = 0.310;
param.std_E_RHO_NW = 0.036;
param.std_E_RN3M_NW = 0.210;
param.std_E_THETAH_NW = 0.219;
param.std_E_U_NW = 0;

%% Read the non-stationary model

modelNS = nb_dsge('nb_file', 'jpt_non_stationary.nb');
modelNS = set (modelNS, 'name', 'JPT with investment specific technology');

%% Assign parameters

modelNS = assignParameters (modelNS, param) ;

oo
)

Solve for the balanced growth path

modelNS = solveBalancedGrowthPath (modelNS) ;

%% Stationarize the non-stationary model

modelNS = stationarize (modelNS) ;

%% Solve steady state numerically

ssInit = struct (...
'"GAMMA_W_NW',O0, ...
'PSI_NW',param.PSI_NW_SS, ..
"S_NW',0,...
'S_PRIME1_NW',O0, ...
'S_PRIME2_NW',0, ...
'"GAMMA_U_NW', 0, ...
"THETAH_NW', param.THETAH_NW_SS) ;

modelNS = checkSteadyState (modelNS, ...
'solver', 'fsolve', ...
'steady_state_solve', true, ...
'steady_state_init"', ssInit, ...
'steady_state_default', @ones);

%% Solve stationary model

modelNS = solve (modelNS) ;
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%% Parametrization

paramP =
paramP.ALPHA_ NW =
paramP .BC_NW =
paramP .BETA_NW =
paramP .BL_NW =
paramP .DELTA_NW =
paramP .DPQ_P_NW_SS =
paramP .DXT_NW_SS =
paramP .DZT_NW_SS =

paramP.
paramP.
paramP.
paramP.
paramP.
paramP.
paramP.
paramP.
paramP.
paramP.
paramP.
paramP.
paramP.
paramP.
paramP.
paramP .
paramP.
paramP.
paramP .
paramP.
paramP.
paramP .
paramP.
paramP .
paramP.
paramP.
paramP.
paramP.
paramP.
paramP.
paramP.
paramP.
paramP .
paramP.

LAMBDA_DXT_NW =
LAMBDA_DZT_NW =
LAMBDA_I_NW =
LAMBDA_L_NW =
LAMBDA_PSI_NW =
LAMBDA_RHO_NW =
LAMBDA_RN3M_NW =
LAMBDA_U_NW =
LAMBDA_THETAH NW =
OMEGA_DPQ_Y_NW =
OMEGA_P_NW =
OMEGA_R_NW =
OMEGA_Y_NW =
PHI_PQ NW =
PHI_I1_NW =
PHI_W_NW =
PHI_U_NW =
PSI_NW_SS =
RHO_NW_SS =
THETAH_NW_SS =
ZETA_NW =
Z_I_NW_SS =
Z_I_NW_SS =
Z_U_NW_SS =
Z_RN3M_NW_SS =
std_E_DXT_NW =
std_E_DZT_NW =
std_E_I_NW =
std_E_IL_NW =
std_E_PSI_NW =
std_E_RHO_NW =
std_E_RN3M_NW =
std_E_THETAH NW =
std_E_U_NW =

%% Read the non-stationary

modelNSPref
modelNSPref =

%% Assign parameters

modelNSPref =

struct ();

0.167;

0.859;

100/ (0.134+100);

0;

0.025;

(0.702 + 100)/100;

1 + (0.597/100);

1 + (0.303 - (param.ALPHA_NW/...
(1 - param.ALPHA_NW))*0.597)/100;
0.156;

0.286;

0.772;

~

.967;
.590;

~

~.

.971;

.208;

.709;

.858;

.051;

.23

.657;

.0080;

.434;

.135/(1.135 - 1);

L171/(1.171 - 1);
.444;

~e Ne N

~

.630;
.933;
.103;

~.

.310;
.036;
.210;
.219;

O O O OO0 UOORFRRFEFRPEDMRERERPRERORPDNOOOR OOOOOO O
~

~

model

nb_dsge('nb_file', 'jpt_non_stationary_pref.nb');
set (modelNSPref, 'name', 'JPT with unit root in preferences');

assignParameters (modelNSPref, paramP) ;
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%% Solve for the balanced growth path

modelNSPref = solveBalancedGrowthPath (modelNSPref) ;
%% Stationarize the non-stationary model
modelNSPref = stationarize (modelNSPref);

%% Solve steady state numerically

ssInit = struct (...
'GAMMA_W_NW', 0, ...
'PSI_NW',paramPref.PSI_NW_SS, ...
"S_NW',0,...
'S_PRIME1I_NW',O0, ...
'S_PRIME2_NW',O0, ...
"GAMMA_U_NW', 0, ...
'THETAH_NW',paramPref.THETAH_NW_SS);

modelNSPref = checkSteadyState (modelNSPref, ...

'solver', 'fsolve', ...
'steady_state_solve', true, ...
'steady_state_init"', ssInit, ...

'steady_state_default', Q@ones);
%% Solve stationary model
modelNSPref = solve (modelNSPref);

%% Compare balanced growth paths

ssGrowth = getBalancedGrowthPath ([modelNS, modelNSPref], ...

{'"C_NW',"I_NW','K_NW','L_NW', "NAT_Y NW', '"REAL_W NW', ...
'REAL_PI_NW'}, "headers')

%% Compare steady state results
ss = getSteadyState ([modelNS,modelNSPref], ...
{'"C_NW', 'DPQ_P_NW', 'DPQ_W NW', 'I_NW', "K_NW', ...
"I, NW', '"NAT_Y NW', 'RN3M_NW'}, ...
'headers')

%% Theoretical moments

vars = {'C_NW', 'DPQ_P_NW', 'DPQ_W_NW', 'I_NW', 'K_NW', ...
"L_NW', '"NAT_Y NW', "RN3M_NW'};

[~,CNS] = theoreticalMoments (modelNS, 'vars',vars, ...
'type', 'covariance');
VNS = diag(CNS) ';
VNS = rename (VNS, 'variable', 'diag', getName (modelNS)) ;
[~,CNSPref] = theoreticalMoments (modelNSPref, 'vars',vars, ...
'type', 'covariance');
VNSPref = diag (CNSPref)';
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’VNSPref = rename (VNSPref, 'variable', 'diag', getName (modelNSPref));

I The automatically made stationary JPT model file with unit root in
preferences

endogenous

Z_U_NW Z_RN3M_NW Z_L_NW Z_I_NW Y_I_NW VPRIME_NW U_NW UPRIME_NW T_NW
THETAH_NW S_PRIME2_NW S_PRIME1_NW S_NW RN3M_NW RK_NW RHO_NW REAL_W_NW
REAL_PQ_NW REAL_PK_NW REAL_PI_NW Q_NW PSI_NW NAT_Y_NW MRS_NW MC_NW

L_NW K_NW KNEW_NW KBAR_NW I_NW GAMMA_W_NW GAMMA_U_NW GAMMAPRIME_U_NW
D_Z_Z D_Z_Y_I_NW D_Z_X D_Z_VPRIME_NW D_Z_UPRIME_NW D_Z_T_NW D_Z_REAL_W_NW
D_Z_Q_NW D_Z_NAT_Y_NW D_Z_MRS_NW D_Z_L_NW D_Z_K_NW D_Z_KNEW_NW

D_Z_KBAR_NW D_Z_I_NW D_Z_C_NW D_Z_A_NW DSA_NW DPQ_Y_NW DPQ_W_NW

DPQ_REAL_W_NW DPQ_REAL_PI_NW DPQ_P_NW DPQ_PQ_NW DPQ_I_NW DPQ_C_NW C_NW A_NW

exogenous
E_DXT_NW E_DZT_NW E_I_NW E_L_NW E_PSI_NW E_RHO_NW E_RN3M_NW E_THETAH_NW
E_U_NW

parameters

std_E_U_NW std_E_THETAH_NW std_E_RN3M_NW std_E_RHO_NW std_E_PSI_NW
std_E_L_NW std_E_I_NW std_E_DZT_NW std_E_DXT_NW Z_U_NW_SS Z_RN3M_NW_SS
Z_L_NW_SS Z_I_NW_SS ZETA_NW THETAH_NW_SS RHO_NW_SS PSI_NW_SS PHI_W_NW
PHI_U_NW PHI_PQ_NW PHI_I1_NW OMEGA_Y_NW OMEGA_R_NW OMEGA_P_NW
OMEGA_DPQ_Y_NW LAMBDA_U_NW LAMBDA_THETAH_NW LAMBDA_RN3M_NW
LAMBDA_RHO_NW LAMBDA_PSI_NW LAMBDA_L_NW LAMBDA_I_NW LAMBDA_DZT_NW
LAMBDA_DXT_NW DZT_NW_SS DXT_NW_SS DPQ_P_NW_SS DELTA_NW BL_NW

BETA_NW BC_NW ALPHA_NW

model

A_NW-Q_NW;

REAL_PQ_NW-1;

T_NW = (((1*Z_L_NW)*L_NW)~ (1-ALPHA_NW) ) * (KBAR_NW~ALPHA_NW) ;
KBAR_NW = (ALPHA_NW* (MC_NW/RK_NW))*T_NW;

L_NW = ((1-ALPHA_NW)*(MC_NW/REAL_W_NW))*T_NW;

Q_NW- (THETAH_NW*Q_NW) + ( (MC_NW+THETAH_NW) *Q_NW) /REAL_PQ_NW-
(((((100*%PHI_PQ_NW)* (DPQ_PQ_NW/DPQ_PQ_NW(-1)-1))*DPQ_PQ_NW) /DPQ_PQ_NW(-1) ) *Q_NW)+
(((((DSA_NW*100)*PHI_PQ_NW) * (DPQ_PQ_NW(+1) /DPQ_PQ_NW-1) ) *
(DPQ_PQ_NW(+1)~2)) /DPQ_PQ_NW) * (Q_NW(+1)*D_Z_Q_NW(+1))-0;
I_NW-Y_I_NW;

REAL_PI_NW-1;

KNEW_NW = (Z_I_NWx(1-S_NW))*I_NW;

S_NW = (PHI_I1_NW/2)*((I_NW/(I_NW(-1)*D_Z_I_NW~--1)-
steady_state(D_Z_I_NW))~2);

S_PRIME1 _NW = ((PHI_I1_NW*(I_NW/(I_NW(-1)*D_Z_I_NW~-1)-

steady_state(D_Z_I_NW)))*I_NW)/(I_NW(-1)*D_Z_I_NW~-1);

S_PRIME2_NW = ((-PHI_I1_NW)*(I_NW/(I_NW(-1)*D_Z_I_NW~-1)-

steady_state(D_Z_I_NW)))* ((I_NW/(I_NW(-1)*D_Z_I_NW~-1))"2);

0 = ((DSA_NW+REAL_PK_NW(+1))*Z_I_NW(+1))*S_PRIME2_NW(+1)+
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(REAL_PK_NW*Z_I_NW)*(1-S_NW-S_PRIME1_NW)-REAL_PI_NW;
UPRIME_NW = (1*Z_U_NW)*(((C_NW-((C_NW(-1)*D_Z_C_NW~-1)*BC_NW))/
(1-(BC_NW/steady_state(D_Z_C_NW))))~(-1));

VPRIME_NW = ((L_NW-(BL_NW*(L_NW(-1)*D_Z_L_NW~-1)))/(1-BL_NW))~ZETA_NW;
DSA_NW = ((BETA_NW*RHO_NW(+1))*(UPRIME_NW(+1)*D_Z_UPRIME_NW(+1)))/
((DPQ_P_NW(+1) *RHO_NW) *UPRIME _NW) ;

DSA_NW+RN3M_NW-1;

REAL_W_NW = (PSI_NW*MRS_NW)/((PSI_NW-1)*(1-GAMMA_W_NW)+
(((1000*PHI_W_NW) *DPQ_W_NW) /DPQ_W_NW(-1) ) *(DPQ_W_NW/DPQ_W_NW(-1)-1) -
(CCCCCC(DSA_NW*DPQ_W_NW(+1))* (L_NW(+1)*D_Z_L_NW(+1))) /L_NW)*1000) *PHI _W_NW) *
DPQ_W_NW(+1))/DPQ_W_NW)* (DPQ_W_NW(+1) /DPQ_W_NW-1)));

GAMMA_W_NW = ((1000%PHI_W_NW)/2)*((DPQ_W_NW/DPQ_W_NW(-1)-1)"2);
MRS_NW = VPRIME_NW/UPRIME_NW;

REAL_PK_NW = (DSA_NW*DPQ_P_NW(+1))*(REAL_PK_NW(+1)*(1-DELTA_NW)+
RK_NW (+1) *U_NW(+1) ~-GAMMA_U_NW(+1)) ;

RK_NW-GAMMAPRIME_U_NW;

GAMMA_U_NW = (steady_state (RK_NW)/PHI_U_NW)* (exp (PHI_U_NW*(U_NW-1))-1);
GAMMAPRIME_U_NW = steady_state (RK_NW)* (exp (PHI_U_NW*(U_NW-1)));

K_NW = (1-DELTA_NW)*(K_NW(-1)*D_Z_K_NW~-1)+KNEW_NW;

KBAR_NW = U_NW*(K_NW(-1)*D_Z_K_NW~-1);

A_NW = C_NW+Y_I_NW;

T_NW-Q_NW;

NAT_Y_NW-A_NW;

DPQ_C_NW = C_NW/(C_NW(-1)*D_Z_C_NW~-1);

DPQ_I_NW = I_NW/(I_NW(-1)*D_Z_I_NW~-1);

DPQ_Y_NW = NAT_Y_NW/(NAT_Y_NW(-1)*D_Z_NAT_Y_NW~-1);

DPQ_PQ_NW = (DPQ_P_NW*REAL_PQ_NW)/REAL_PQ_NW(-1);

DPQ_REAL_PI_NW = REAL_PI_NW/REAL_PI_NW(-1);

DPQ_REAL_W_NW = REAL_W_NW/(REAL_W_NW(-1)*D_Z_REAL_W_NW~-1);

DPQ_W_NW = (REAL_W_NW/(REAL_W_NW(-1)*D_Z_REAL_W_NW~-1))*DPQ_P_NW;
RN3M_NW = ((RN3M_NW(-1)"0OMEGA_R_NW) * ((((steady_state (RN3M_NW)*
((DPQ_P_NW/steady_state(DPQ_P_NW)) ~OMEGA_P_NW)) *
((NAT_Y_NW/steady_state (NAT_Y_NW)) ~OMEGA_Y_NW) ) *
((DPQ_Y_NW/steady_state (DPQ_Y_NW)) ~OMEGA_DPQ_Y_NW))~ (1-OMEGA_R_NW)))*
(Z_RN3M_NW/steady_state(Z_RN3M_NW)) ;

[static] DPQ_P_NW = DPQ_P_NW_SS;

log(PSI_NW) = (1-LAMBDA_PSI_NW)*log(PSI_NW_SS)+
LAMBDA_PSI_NWklog(PSI_NW(-1))+E_PSI_NWxstd_E_PSI_NW;

log(RHO_NW) = (1-LAMBDA_RHO_NW)*log(RHO_NW_SS)+

LAMBDA_RHO_NW*log (RHO_NW(-1))+E_RHO_NW*std_E_RHO_NW;

log(THETAH_NW) = (1-LAMBDA_THETAH_NW)*log(THETAH_NW_SS)+
LAMBDA_THETAH_NW#log (THETAH_NW(-1))+E_THETAH_NWxstd_E_THETAH_NW;
log(Z_I_NW) = (1-LAMBDA_I_NW)*log(Z_I_NW_SS)+
LAMBDA_I_NW*log(Z_I_NW(-1))+E_I_NWxstd_E_I_NW;

log(Z_L_NW) = (1-LAMBDA_L_NW)*log(Z_L_NW_SS)+
LAMBDA_L_NW*log(Z_L_NW(-1))+E_L_NW*std_E_L_NW;

log(Z_U_NW) = (1-LAMBDA_U_NW)*log(Z_U_NW_SS)+
LAMBDA_U_NW*log(Z_U_NW(-1))+E_U_NW*std_E_U_NW;

log(Z_RN3M_NW) = (1-LAMBDA_RN3M_NW)*log(Z_RN3M_NW_SS)+
LAMBDA_RN3M_NW+*log(Z_RN3M_NW(-1))+E_RN3M_NWxstd_E_RN3M_NW;

The unit root processes specified
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1/(1*D_Z_Z~-1) = ((DZT_NW_SS~(1-LAMBDA_DZT_NW))=*
(((1%D_Z_Z~-1)/(1*%D_Z_Z~-1*%D_Z_Z(-1)~-1)) ~LAMBDA_DZT_NW) ) *
(exp(std_E_DZT_NW+E_DZT_NW)) ;

1/(1*D_Z_X~-1) = ((DXT_NW_SS~(1-LAMBDA_DXT_NW))*
(((1*#D_Z_X~-1)/(1*D_Z_X~-1*D_Z_X(-1)~-1)) ~"LAMBDA_DXT_NW) ) *
(exp(std_E_DXT_NWxE_DXT_NW)) ;

The identified G* functions

log(D_Z_A_NW)-log(D_Z_Q_NW);

ALPHA_NW#log(D_Z_L_NW)+ALPHA_NWxlog(D_Z_Z)+log(D_Z_T_NW)-
ALPHA_NWxlog(D_Z_KBAR_NW)-log(D_Z_L_NW)-log(D_Z_Z);
log(D_Z_KBAR_NW)-log(D_Z_T_NW);
log(D_Z_L_NW)+log(D_Z_REAL_W_NW)-log(D_Z_T_NW) ;
log(D_Z_I_NW)-log(D_Z_Y_I_NW);

log(D_Z_KNEW_NW)-log(D_Z_I_NW);
log(D_Z_C_NW)+log(D_Z_UPRIME_NW)-log(D_Z_X);
log(D_Z_VPRIME_NW)-ZETA_NWxlog(D_Z_L_NW) ;
log(D_Z_REAL_W_NW)-log(D_Z_MRS_NW);
log(D_Z_MRS_NW)+log(D_Z_UPRIME_NW)-log(D_Z_VPRIME_NW) ;
log(D_Z_K_NW)-log(D_Z_KNEW_NW) ;
log(D_Z_KBAR_NW)-log(D_Z_K_NW);
log(D_Z_A_NW)-log(D_Z_C_NW) ;

log(D_Z_A_NW)-log(D_Z_Y_I_NW);

log(D_Z_NAT_Y_NW)-log(D_Z_A_NW) ;

Finally the reporting;:

reporting
C_NW_LEVEL = exp(cumsum(log(DPQ_C_NW) - log(steady_state(DPQ_C_NW))));
I_NW_LEVEL = exp(cumsum(log(DPQ_I_NW) - log(steady_state(DPQ_I_NW))));
K_NW_LEVEL = exp(cumsum(log(DPQ_K_NW) log(steady_state(DPQ_K_NW))));
Y_NW_LEVEL = exp(cumsum(log(DPQ_Y_NW) - log(steady_state(DPQ_Y_NW))));

1]

J The model file to automatically solve the endogenous RBC model

endogenous

cdA ik 1lpar s srd ups upsprime y

exogenous

eu

unitrootvars

A

parameters

beta delta delta_a g gamma lambda_srd srd_ss std_e std_u theta zeta
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model

% Optimality condition of the households

c(+1)/c = betax(l + r);
1 =1;
y = (A(-1)*1) gamma * k(-1)"(1l-gamma);

(1-gamma)*y(+1)/k = r + delta;

1 +r

k

(pa(+1)/pa)*(1 - delta_a) + (1/pa)*gammaxy(+1)/A;
(1-delta)*k(-1) + i;

% Optimality condition of the capital producers

log(srd) = (1 - lambda_srd)*log(srd_ss) + lambda_srd*log(srd(-1))
+ std_exe;

pa*(A(-1)/A) *xupsprime*exp(std_u*u) = 1 - srd;

ups = g + theta/(1 - 1/zeta)*(s/A)~(1 - 1/zeta);

upsprime = theta*(s/A)~(-1/zeta);

A = (1 - delta_a + ups*exp(std_u*u))*A(-1);

% Market clearing

y=c¢c+1i+s;

% Other
dA = A/A(-1);

% Construct reported variables not part of the model.

reporting
A = exp(cumsum(log(dA) - log(steady_state(dA))));
C = c*4; I = ixl;
K = k*A; S = s*A; Y = y*A;

c_log_dev = exp(log(C)

log(C(1)));
log(I(1)));
log(K(1)));
log(S(1)));

r_dev = r - steady_state(r);

i_log_dev = exp(log(I)

k_log_dev = exp(log(X)

s_log_dev = exp(log(S)
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srd_dev

y_log_dev = exp(log(Y) - log(Y(1)));

srd - steady_state(srd);

K Comparison with Dynare
The dynare code to solve the RBC model of section 5.1 is the following

var dA;
trend_var(growth_factor=dA) A;
var 1, r;

var(deflator=4A) c, i, k, y;

varexo u;

parameters beta, delta, g, gamma, lambda, std_u;

g =1.03; gamma = 0.60; delta = 0.10;
beta = 0.97; 1lambda = 0; std_u = 0.01;
model;
% Model equations in non-stationary form
c(+1)/c = betax(1 + r); // ¢
1 =1, //1
y = (A*1l) gamma * k(-1)~(1-gamma); // k
(1-gamma)*y (+1)/k = r + delta; // r
k = (1-delta)*k(-1) + i; // i
y =c+i; /)y
dA = g~(1-lambda)*dA(-1) " lambdaxexp(std_u*u);
end;
shocks;

var u; stderr 1;

end;
initval;

k=1; di=g; c=1; 1=1;y=1; k=1; r=1; 1=1;

end;
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steady;
check;

stoch_simul;
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Figure 5: Responses to a technology shock in the RBC model of section 5.1

The responses we obtain are in the figure 5. Superimposed are those obtained solving the model with
NB toolbox.
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