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Abstract

A Bayesian nonparametric predictive model is introduced to construct
time-varying weighted combinations of a large set of predictive densities. A
clustering mechanism allocates these densities into a smaller number of mutually
exclusive subsets. Using properties of the Aitchinson’s geometry of the simplex,
combination weights are defined with a probabilistic interpretation. The class-

preserving property of the logistic-normal distribution is used to define a
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compositional dynamic factor model for the weight dynamics with latent factors
defined on a reduced dimension simplex. Groups of predictive models with
combination weights are updated with parallel clustering and sequential Monte
Carlo filters. The procedure is applied to predict Standard & Poor’s 500 index
using more than 7000 predictive densities based on US individual stocks and finds
substantial forecast and economic gains. Similar forecast gains are obtained in
point and density forecasting of US real GDP, Inflation, Treasury Bill yield and

employment using a large data set.

JEL codes: C11, C15, C53, E37.
Keywords: Density Combination, Large Set of Predictive Densities, Compositional

Factor Models, Nonlinear State Space, Bayesian Inference, GPU Computing.

1 Introduction

Forecasting with large sets of data is a topic of substantial interest to academic
researchers as well as to professional and applied forecasters. It has been studied in
several papers (e.g., see Stock and Watson, 1999, 2002, 2004, 2005, 2014, and Banbura
et al., 2010). The recent fast growth in (real-time) big data allows researchers to
predict variables of interest more accurately (e.g., see Choi and Varian, 2012; Varian,
2014; Varian and Scott, 2014; Einav and Levin, 2014). Stock and Watson (2005, 2014),
Banbura et al. (2010) and Koop and Korobilis (2013) suggest, for instance, that there
are potential gains from forecasting using a large set of predictors instead of a single
predictor from a univariate time series. However, forecasting with many predictors
and high-dimensional models requires new modeling strategies (to keep the number
of parameters and latent variables relatively small), efficient inference methods and
extra computing power like parallel computing. We refer to Granger (1998) for an
early discussion of these issues.

We propose a Bayesian nonparametric model in order to deal with large set of
predictive densities. The proposed model is still relatively parsimonious in the number
of parameters and latent variables and has a representation in terms of a dependent
sequence of random measures on the set of predictors of different models, with common
atoms and component-specific random weights. Our model extends the mixture of the
experts and the smoothly mixing regression models (Jacobs et al., 1991, Jordan and
Jacobs, 1994, Jordan and Xu, 1995, Peng et al., 1996, Wood et al., 2002, Geweke and
Keane, 2007, Villani et al., 2009, Norets, 2010) by allowing for dependence between

the random weights of the mixture and for model incompleteness. In this sense,



our combination model shares some similarities with the dependent random measures
used in Bayesian nonparametric models (see Miiller and Quintana, 2010 and Miiller
and Mitra, 2013).

The proposed approach introduces an information reduction step by making use
of a clustering mechanism where allocation variables map the original set of predictive
densities into a relatively small number of mutually exclusive subsets with combination
weights driven by cluster specific latent processes specified as a compositional factor
model, see Pawlowsky-Glahn and Buccianti (2011) for details on compositional data
analysis. This structure of the latent space allows for a probabilistic interpretation of
the weights as model probabilities in the combination scheme that are evolving over
time. There exists an issue of analytic tractability of the probabilistic information
in the information reduction step. Here the class-preserving property of the logistic-
normal distribution (see Aitchinson and Shen, 1980, Aitchinson, 1982) is used. The
complete model is represented in a nonlinear state space form where the measurement
equation refers to the combination model and the transition function of the latent
weights is a dynamic compositional factor model with a noise process that follows

1 Given that the space of the random

a multivariate logistic-normal distribution.
measures is equipped with suitable operations and norms, we also show that this
nonlinear state space model may be interpreted as a generalized linear model with
a local level component. Sequential prediction and filtering is applied in order to
efficiently update the dynamic clustered weights of the combination model. In this
sense the paper contributes to the literature on time series on a bounded domain
(see, e.g., Aitchinson, 1982, Aitchinson, 1986 and Billheimer et al., 2001) and on state
space models for compositional data analysis (see, e.g., Grunwald et al., 1993). In that
literature the compositional data are usually observed, while in our model the weights
are latent probabilities.

Our model extends Stock and Watson (2002) and Stock and Watson (2005) along
two directions. First, we propose a joint prediction model for a group of variables
of interest instead of a single variable; second, we combine large sets of predictive
densities instead of large sets of point forecasts. We also extend Billio et al. (2013)
and Casarin et al. (2015) substantially by making a connection with the mixture of
experts literature and by allowing for a high dimensional combination model that is
still parsimonious in the number of parameters and latent variables.

Another contribution of this paper refers to the literature on parallel computing.

!This distribution has arisen naturally in the reconciliation of subjective probabilities assessments,
see Lindley et al. (1979) and also Pawlowsky-Glahn et al. (2015), chapter 6 for details.



We provide an estimate of the gain, in terms of computing time, of the GPU
implementation of our density combination strategy with respect to CPU multi-
core implementation. This approach to computing has been successfully applied in
econometrics for Bayesian inference (Geweke and Durham, 2012 and Lee et al., 2010)
and in economics for solving DSGE models (Aldrich et al., 2011 and Morozov and
Mathur, 2012).

The proposed method is applied to two well-known problems in finance and
economics: predicting stock returns and predicting macro-finance variables using the
Stock and Watson (2005) dataset. In the first example, we use more than 7000
predictive densities based on 3712 US individual stock return series to replicate the
daily aggregate S&P 500 returns over the sample 2007-2009 and predict the economic
value of tail events like Value-at-Risk. We find large accuracy gains with respect to
the no-predictability benchmark and predictions from individual models estimated on
the aggregate index. In the second example, we find substantial gains in point and
density forecasting of US real GDP, GDP deflator inflation, Treasury Bill yield and
employment over the last 25 years for all horizons from one-quarter ahead to five-
quarter ahead. The highest accuracy is achieved when the four series are predicted
simultaneously using our combination schemes within and across cluster weights based
on log score learning. We emphasize that the cluster-based weights contain relevant
signals about the importance of the forecasting performance of each of the models
used in the clusters. Some clusters have a substantial weight while others have only
little weight and such a pattern may vary over long time periods. This may lead to
the construction of alternative model combinations for more accurate out-of-sample
forecasting.

As far as computational gains using parallel computing is concerned, we find that
the GPU algorithm reduces the computation time with respect to the CPU version of
several multiples of CPU computing time.

The paper is structured as follows. Section 2 describes the Bayesian nonparametric
predictive model and presents the strategy of the dimension reduction of the latent
space. Section 3 provides details of the probabilistic information reduction and a
representation of our model as a nonlinear compositional state space model. Section 4
presents the inference procedure. Section 5 applies our model to large set of US stocks
are used to predict the aggregate index. Section 5.2 presents an analysis of the Stock
and Watson (2005) macroeconomic data set. Section 6 concludes. The Appendices

contain more details on data, derivations and results.



2 Density combination and clustering for large data sets

This paper builds on the combination of predictive densities with time-varying weights

and on a information reduction technique based on sequential clustering.

2.1 Model uncertainty and model combination

Our combination approach is based on a convolution of predictive densities that
consists of a model combination density, a time-varying weight density and a density
of the predictors of many models (Billio et al., 2013, Casarin et al., 2015). See also
Waggoner and Zha (2012) and Del Negro et al. (2014) who propose time-varying
weights in the linear opinion framework and Fawcett et al. (2015) who introduce
time-varying weights in the generalized linear pool. Conflitti et al. (2012) propose
optimal combinations of large set of point and density survey forecasts; their weights
are, however, not modeled with time-varying patterns. Finally, Raftery et al. (2010)
develop Dynamic Model Averaging that allows the “correct” model to vary over time.

In this paper we provide a representation of the density combination approach in
terms of a Bayesian nonparametric predictive model and show the relationship with
the mixture of experts approach to construct predictive densities, elaborating on the
model presented in Billio et al., 2013 Appendix B and in Del Negro et al. (2014).

Let y: = (y1t,---,yxt) be the K-dimensional vector of variables of interest, and
Vi = (J1ts -, Unt)" & vector of n random predictors for the variables of interest with
densities fi(gi), @ = 1,...,n, conditional on the information set available at time

t — 1. We introduce a sequence of discrete probability distributions over the set of
predictors, which defines the probability, wj k¢, of the i-th predictive model at time ¢
to be used in forming the prediction for the variable of interest yi;. Thus, we define

the following sequence of possibly dependent random measures

n
Pro(ddk) = D wike0g,, (d0%) (1)

i=1
t=1,..., T, k=1,..., K. where J, is a point mass at x, 9, is a parameter of interest
of the predictive distribution of the variable yy, and Wiy = (w1 ke, - .- ,wmkt)’ is a set

of random weights defined by the following multivariate logistic construction

exp{@ikt }
Wy gt = ’ (2)
' D i1 exp{ai ke }
where xp; = (T1gt,...,Tnke) € R™ is a vector of latent variables. We denote



with wy; = ¢~ !(xzs) the multivariate logistic transform. The random measures Py,
k=1,..., K, contain extra-sample information about the variables of interest, and we
assume that each random measure can be used as prior distribution for a parameter
Jp of a given predictive distribution for the variable of interest yi;. The sequence of
dependent random measures can be interpreted as an expert system and shares some
similarities with the hierarchical mixtures of experts, the dependent Dirichlet processes
and the random partition models as discussed in Miiller and Quintana (2010). See
also Miiller and Mitra (2013) for a review. Finally, note that the random measures
share the same atoms, but have different weights. See, e.g. Bassetti et al. (2014), for a
different class of the random measures based on the stick-breaking construction of the
weights and measure-specific atoms. Section 3 discusses some features of the space of
the random weights used in this paper.

At time t — 1, the sequence of random measure Py, K = 1,..., K can be employed

as a prior distribution for the following sequence of conditional predictive densities

Ykt ~ Kt (Yre[9) (3)
k=1,...,K, in order to obtain the following conditional predictive density
Tt (Ut|9y) = //th(yktW)Pkt(dﬁ) = sz’,kt’th(ykth‘t) (4)
=1

If one chooses KCr¢(yx¢|9) to be the pdf of a normal distribution N(u,c?) and let u
be the parameter of interest, then y; follows a Gaussian mixture combination model

(see Billio et al. (2013) for alternative specifications),

n

fkt(ykt|wkt70]%ta1~/t) ~ Zwi,ktf(ykt|?]z’t,f71%,t) (5)
i=1

fkt(lOgUl%t) ~ f(lOgUI%t“OgUl%,t—hU%k) (6)

k=1,...,K,t=1,...,T, where f(y|u,0?) is the pdf of the normal distribution
N(,0?%), and O']%t, t =1,...,T, is a stochastic volatility process. As shown in the
following, the process ait controls the overall uncertainty level about the prediction
models used in the combination. When the uncertainty level tends to zero then we
recover as a limiting case the mixture of experts or the smoothly mixing regressions
models (see Appendix B in Billio et al., 2013).

Proposition 2.1 (Mixture representation). Under standard regularity conditions,



the marginal predictive density has the following discrete and continuous mizture
representation
n
Srt (Ure|Wit) = Zwk,z‘t/R’th(ykt\ﬂit)fit@it)dﬂit (7)
i=1
Under the assumption of a Gaussian predictive distribution one has K (y|gic) =

S (Wl it Uit) and

n

Fet Uit wee) — D wi e fit (Yre) (8)
i=1

k=1,...,K, for opz — 0.

We emphasize that in our approach the overall level of uncertainty, controlled
by a,%,t is a major indicator of incompleteness of the set of predictive models. The

importance of measuring model incompleteness is shown in our empirical analyses.

2.2 Information reduction

In the specification of the combination model given in the previous section, the
number of latent processes to estimate is nK at every time period t which can be
computationally heavy, even when a small number of variables of interest, e.g. 4, and
a moderate number of models, e.g. K = 100, are considered. The second contribution
of the paper is to diminish the complexity of the combination exercise by reducing the
dimension of the latent space.?

As a first step, the n predictors are clustered into m different groups, with m < n,
following some (time-varying) features v;,, i = 1,...,n, of the predictive densities.
We introduce §; ;+ as an allocation variable, which takes the value 1 if the i-th predictor
is assigned to the j-th group of densities and 0 otherwise. We assume each predictor
belongs to only one group, that Z;ﬁ:l &t = 1 for all 4. Also, the grouping of the
predictors can change over time, following a learning mechanism which is defined by
a sequential clustering rule. Details of the sequential clustering rule are given in the
following section.

Given the clustering of the predictors, we specify how to reduce the dimension of
the latent weight space from nK to mK with m < n. To this aim, we specify the
(nxm) allocation matrix Z¢ = (&14, - - - &), With &5 = (&1t5 -+ 5 &ine), G = 1,...,m,

the vector of allocation variables &;;; € {0,1}, and a (m x n) coefficient matrix By

2We note that, although our aim is full Bayesian analysis, the very large scale of some problems
and the implied heavy computations may lead to pragmatic decisions in this context in the sense that
the very large set of predictive densities may be the result from applying either Bayesian or other
inferential methods, see section 5.



with the i-th row and j-th column element given by b;; 1; € R. The two matrices allow
us to project the n-dimensional latent variable x;; onto a reduced dimension latent

space, through the following latent factor model

Xit = (2t 0 Bie) Ve 9)

where o denotes the element-by-element Hadamard’s product, and v =

(Vi gty -« - 5 Um,kt)/ is a m-variate normal random walk process
iid
Vit = Vkt—1 + Xktr Xkt ™ m(Om, Tk) (10)

The process viy, t = 1,...,T, is latent and is driving the weights of the predictive
densities which are used to forecast the k-th variable of interest. The set of all variable-
specific latent processes, is associated width a latent space of dimension mK. The
coefficients, §; i+ and b;jr, 7 = 1,...,m, for each variable of interest k, predictor j
and time ¢, are crucial in order to obtain a parsimonious latent variable model and
consequently to reduce the computational complexity of the combination procedure.

For specific values of the coefficients b;; 1, we propose two alternative strategies.
The first one is where all coefficients in the cluster have the same weights, which

corresponds to set b;j x¢ as:

/nje if & =1
bijkt = ’ ” 11
ikt { 0 otherwise (11)

where
n
njt =Y &t
i=1

is the number of predictive densities in the j-th cluster at time ¢. Note that, following
this specification of the coefficients, the weights of the n predictors for the k-th variable

of interest are
wy g = Pt/ it}
" S exp{vjke/ne )

where j; = >, j€;it indicates the group to which the i-th predictor belongs. The

1=1,...,n

latent weights are driven by a set of m latent variables, with m < n, thus the
dimensional reduction of the latent space is achieved. Moreover, let N;; = {j =
1,...,n|& j+ = 1} be the set of the indexes of all models in the cluster 4, then one can
see that this specifications may have the undesirable property that the weights are

constant within a group, that is for all j € N.



For this reason, we also propose the second specification strategy where we assume
that each model contributes to the combination with a specific weight that is driven
by a model-specific forecasting performance measure. If we assume g;; is the log score
(see definition in (B.50)) of the model ¢ at time ¢ then

sm1exp{gis}/Gi if &ir =1
bijit = : (12)
otherwise

where g;z = ZleNit Zi:l exp{gis}-
All the modeling assumptions discussed above allow us to reduce the complexity
of the combination exercise because the set of time-varying combination weights to

estimate is of dimension mK < nkK.

3 Reduced-dimension state-space representation

The density combination model proposed in this paper can be written in terms
of a nonlinear state space model defined on a reduced-dimension latent space.
Moreover, thanks to the class-preserving property of the logistic-normal distribution,
the proposed transition density can be represented as a compositional latent factor
model. We also show that this nonlinear state space model may be written in the
form of a generalized linear model with a local level component when the space of the

random measures is equipped with suitable operations and norms.

3.1 Probabilistic information reduction

We start to introduce some useful results and definitions. Let S* = {u € R’} |u; +
...+ u, < 1} be the n-dimensional standard simplex, where R’} denotes the positive

orthant of R™. Proofs of results are presented in Appendix A.1.

Definition 3.1 (Composition function). The function Cp(u) : RT — ™71 u
v = Cy,(u) with the i-the element of v defined as v; = u;/vm, i = 1,...,m — 1, with

U = Wiy,

Proposition 3.1 (Logistic-normal distribution). Let v ~ Ny, (i, ), and define
u = exp(Vv), that is the component-wise exponential transform of v, and z = Cp,(u),
that is the composition of u, then u follows a m-variate log-normal distribution,

A (p,Y), and z follows a logistic-normal distribution L,—1(Dpp, Dy Y D)) with



density function

m—1

-1
p(z|p, T) = |27 D, YD, |1/2 ( zj) exp(—%(log(z/zm) — Dpp) (13)

j=1
(DT D}y) " (0g(2/2m) — Diups)’ ) (14)

where z € S™1, Zmit = 1 — Z'tm—1, Dy = (Im—1, —tm-1) and ty—1 is the (m — 1)

unit vector.

Corollary 3.1. Let v ~ Ny, (Vie—1, Ti), and zg; = Cpy(exp(vit)), then zp; € S™1
follows the logistic-normal distribution Ly,—1(DmVii—1, DmYrD5,).

The class-preserving property of the composition of the logistic-normal vectors (see
Aitchinson and Shen, 1980) will be used in the proof of the main result of this section.

We show how this property adapts to our state space model.

Proposition 3.2 (Class-preserving property). Let zgs ~ Ly—1(DpmVit—1, D Y DL))
a logistic-normal vector, and A a (c x m — 1) matriz. Define the following transform

w = ¢4(z) from S™1 to S¢ , with in our case m < c,

m - Qi c m 5 Qi -1
Wikt = H<W> <1+ZH< J”“) ) , i=1,...,c
7

-1 Zm,kt

then Wiy = (W1 gt, - - ., Weke) follows the logistic-normal L.(ADpyVig—1, AD,, YD), A').

3.2 A reduced-dimension state-space representation
Given the results in the preceding subsection, we can now state the main result.

Proposition 3.3 (State-space form). Let Ay = E;0 By, k= 1,..., K, be a matriz
of coefficients, then the model given in equations 5-9 can be written in the following

state space form

K n
~ TT Y wineN (gies o) (15)
k=1:1=1

Wit ~ Lpoa (A tDkat—lyjktDmTkD;n;l;st> , k=1,....K (16)

Wit = (W1 gty - -+ Wn—1kt) and wp gy = 1—Wi,tn—1, @ denotes the Kronecker’s product,
Ay = (fl;ct,O’ )X(m_l))’, with 7y = Card(Ny) and Ny = {i = L...,n|&mit # 1}

(n—n
the set of indexes of the models allocated in the cluster m.

10
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Figure 1: Relationships between the latent variables (left) and the latent probability
spaces (right) involved in our compositional latent factor model. The origin of the
directed edge indicates the transformed variable, the arrow indicates the results of
the transformation, and the edge label defines the transform applied. The symbol *
indicates a composition of functions.

The previous proposition establishes a relationship between the set of latent
weights wy,; and their projection, zy, on the lower dimension latent space S™~!. The
diagram on the left side of Figure 1 summarizes the relationships between the latent
variables involved in our compositional latent factor model. The symbol * indicates
function composition. The diagram on the right shows the relationship between the
probability latent spaces. In both diagrams, the chaining process given by the function
composition ¢4 * C}, * exp indicates that the probabilistic interpretation of the n-
dimensional weight vector wg; naturally transfers to the m-dimensional vector zy,
with m < n.

In the same diagram an alternative chaining process is given by the function
composition C, % exp#*(Z; o By), which allows for the following alternative

representation of the latent factor model as a logistic-normal factor model.

Corollary 3.2. The transition density given in Proposition 3.8 can be written as

=g / / -
Wit ~ En—l (DnAktvktflv DnAktDnTan kt) and Wn, kt = 1- Wiiln—1-

Distributions other than the logistic-normal can be used for weights such as the
Dirichlet distribution, but as noted in Aitchinson and Shen (1980) this distribution
may be too simple to be realistic in the analysis of compositional data since the
components of a Dirichlet composition have a correlation structure determined solely
by the normalization operation in the composition. See, Aitchinson and Shen
(1980) for a complete discussion of the advantages of the logistic-normal distribution

compared to the Dirichlet.

11



We also present another result that shows how the state space model can be written
as a generalized linear model with a local level transition function when the space of
the random measures is equipped with suitable operations and norms. Moreover, we
show that the probabilistic interpretation is preserved for the lower dimensional set of
latent weights.

Define the observation real space RX equipped with the inner product < x,y >=
Zfil ry;, X,y € RX and scalar product ax = (azi,...,arx)’, x € RX a € R
operations. Also, define the simplex (state) space, S"~! equipped with a sum operation
(also called perturbation operation), u®v = C(uov), u, v € S*~! and a scalar product
operation (also called power transform) a®u = C((u$,...,u%_;)),u e S" 1 a € R,.
For details and background, see Aitchinson (1986) and Aitchinson (1992). Billheimer
et al. (2001) showed that S"~! equipped with the perturbation and powering operations
is a vector space. Moreover S*~! is an Hilbert space, i.e. a complete, inner product
vector space, equipped with the inner product < u,v >y= u,v € S*! space. These

properties enable us to state the following result.

Corollary 3.3. Lets; = (sy;,.-.,Sg;) be an allocation vector, with sp; ~ Ma,(1, W),
k= 1,...,K, where M,(1,wy) denotes the multinomial distribution, and ¥y =
diag{o?,,...,0%,} a covariance matriz. ~ Then, the state space model given in

Proposition 3.3 can be written as

yi = (Ik®yi)si+er, e~ Nk(0,%) (17)
1 ith bability w;
- wi pré ability w; (18)
0 otherwise
wi = ¢(z) (19)
Zit = Zgi—1 D Ny Nyt ~ Lm—1 (0, DnTkDyln) (20)
where ¢(zt) = (¢pay,(Z1t), - - - Py, (ZKt)) is a function from S™1 to S, where the

function ¢a(z) has been defined in 3.2.

The representation in corollary 3.3 shows that the model is a conditionally linear
model with link function defined by ¢4 and a linear local level factor model on the
simplex. Also, by extending the ® product operation to the case of a matrix of real
numbers and exploiting the Euclidean vector space structure of (S, @, ®) allow us to
write the transform ¢4, for special values of A, as a linear matrix operation between
simplices of different dimensions as stated in the following remark. In the following

we introduce the symbol H and define the matrix multiplication operation.

12



Remark 1. Let z € S™! be a composition, A a (n x m) real matriz and define

the matriz multiplication AB z = C,, ( i) z?”, N Vi z?"ilj). If A is such that
Aty =0, and aj, = =1, i =1,....,n—1 and ap; =0 j = 1,...,m, the transform

defined in proposition 3.2 can be written as ¢p4(z) = AB z.
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Figure 2: First row: De Finetti’s diagram (left) and the time series plot (right) of the ternary
(21,6, 22,t, 23,¢). Other rows: De Finetti’s diagram of the ternary (ws ¢, wj ¢, w_(; jy), j > i. In
each plot the trajectory (blue line), the starting (red) and ending (black) points and the equal
weight composition (square).

A simulated example of compositional factor model is given in Fig. 2 by using
the De Finetti or ternary diagram (see Cannings and Edwards (1968) and Pawlowsky-
Glahn et al. (2015), Appendix A). The first row presents the evolution of three driving
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factors (z14,22¢,23+) by using a De Finetti’s diagram (left) and a time series plot
(right). The other rows present the pairwise comparisons of the weight dynamics by
the De Finetti’s diagram of the trajectory (blue line) of the ternary (wj s, wj ¢, w_(; jy+)
where w_; j) 1 = > 4 ; Wit s the other model total weight. The red and black dots
are the initial and final values. Further details of this example are given in section
B.1 of the Online Appendix. We refer to the Billheimer et al. (2001) for further
details on the algebraic structure of the simplex equipped with the perturbation and
powering composition and for a Gibbs sampling scheme for compositional state space
model. See also Egozcue et al. (2003), Egozcue and Pawlowskky-Glahn (2005) and
FiSerova and Hron (2011) for further details on the isometric transforms from the real
space to the simplex and and for further geometric aspects and property analysis of
operations on the simplex, such as the amalgamation and subcomposition operations.
See also Pawlowsky-Glahn and Buccianti (2011) and Pawlowsky-Glahn et al. (2015)

for up-to-date and complete reviews on compositional data models.

4 Sequential inference

The analytical solution of the optimal filtering problem is generally not known, also the
clustering-based mapping of the predictor weights onto the subset of latent variables
requires the solution of an optimization problem which is not available in closed form.
Thus, we apply a sequential numerical approximation of the two problems and use an

algorithm which, at time ¢ iterates over the following two steps:
1. Parallel sequential clustering computation of =;

2. Sequential Monte Carlo approximation of combination weights and predictive

densities

As regards the sequential clustering, we apply a parallel and sequential k-means
method with a forgetting factor for the sequential learning of the group structure.
K-means clustering, see for an early treatment Hartigan and Wong (1979), is a
method partitioning a set of n vectors of parameters or features of the predictors,
P, © = 1,...,n, into m disjoints sets (clusters), in which each observation belongs
to the cluster with the least distance. Moreover, the sequential k-means algorithm
is easy to parallelize and it has been done on multi core CPU and GPU computing
environments, see Favirar et al. (2008) and the reference therein. The details of the

algorithm and its parallel implementation are given in Appendix A.2.
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As regards the sequential filtering we apply sequential Monte Carlo as in Billio
et al. (2013). Let 8; € © be the parameter vector of the combination model, that
is 0; = (logo?,,...,logo%,,vecd( Y1), ..., veed(Tkt)). Let wi = (Wi;,..., wy) the
vector of weights, and u;; = (uy,...,u;) the collection of vectors u; from time 1 to
time ¢. Following Kitagawa (1998), Kitagawa and Sato (2001), and Liu and West
(2001), we define the augmented state vector w{ = (wy, 8;) € Z, and the augmented

state space W = S"~! x ©. Our combination model writes in the state space form

yi ~ pyiw?, ye) (measurement density) (21)
w! ~ p(wWlw? |, y14-1,914-1) (transition density) (22)
wh o~ p(wh) (initial density) (23)

where the measurement density is
K n
plydwi,50) o [ D wineN (Fie, o7y (24)
k=1i=1

and the transition density is the probability density function of the distribution given

in equation 16, that is

P(Wt|9t,Wfq;}’l:t—laf’l:t—l) X (25)
K n—1 a1 1

o< T 01—enrwe (wnee) | TT ke I exp ( - §(log<wj,kt/wn,kt)
k=1 j=1 j=1

= = ™ ™ /
~ A Dyvie 1 ) (At Do Y1 Dy Ajy) ™ (1085t /w0 k) = Ay Dinrge1) ) (26)

The state predictive and filtering densities are

p(Wl |y, ¥1e) = /W p(WY WYy, 1) p(WY [y 1, 1) dw!  (27)

0 > 9 ~
- P\Yt+1|Wiy1, Yt+1)P\W Yit, Y1t
P(W?+1|Y1:t+17}’1:t+1) = ( Wi L ~t+1| ) (28)
P(Yis1|yie, Yiut)

The marginal predictive density of the observable variables is

P(yes1lyr:e) :/yp(waJr1|YI:t7S’t+1)p(yt+1|Y1:t)dyt+1

15



where p(y;11]y1:4, ¥e+1) is defined as

/W ytp(}’t—i-l ’W?+1 ; S’t+1)p(W?+1 lyi:, 5’1:t)p(§’1:t\Y1;t—1)dW?+1d5’1:t
X

and represents the conditional predictive density of the observable given the past values
of the observable and of the predictors. Further details of the algorithm is given in
Appendices A.3, A.2 and B.2.

5 Results

The first example focuses on replicating the daily Standard & Poor 500 (S&P500)
index return and predicting the economic value of tail events like Value-at-Risk. As
a second example we consider the extended Stock and Watson (2005) dataset, which
includes 142 series sampled at a quarterly frequency from 1959Q1 to 2011Q2. Finally,
we compare the computational speed of CPU with GPU in the implementation of our

combination algorithm for the financial and macro applications.

5.1 Predicting Standard & Poor 500 (S&P500)

The econometrician interested in predicting this index (or a transformation of it as
the return) has, at least, two standard strategies. First, she can model the index with
a parametric or non-parametric specification and produce a forecast of it. Second, she
can predict the price of each stock ¢ and then aggregate them using an approximation
of the unknown weighting scheme.

We propose an alternative strategy based on the fact that many investors, including
mutual funds, hedge funds and exchange-traded funds, try to replicate the performance
of the index by holding a set of stocks, which are not necessarily the exact same stocks
included in the index. We collect the S&P500 index and 3712 individual stock daily
prices quoted in the NYSE and NASDAQ from Datastream over the sample March
18, 2002 to December 31, 2009, for a total of 2034 daily observation. To control for
liquidity we impose that each stock has been traded a number of days corresponding
to at least 40% of the sample size. We compute log returns for all stocks. S&P500 and
cross-section average statistics are reported in Table B.1 in section B.4 of the Online
Appendix. We produce a density forecast for each of the stock prices and then apply
our density combination scheme to compute clustered weights and a combined density
forecast of the index. The output is a density forecast of the index with clustered

weights that indicate the relative forecasting importance of these clusters. That is,
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a side output of our method is that it produces a replication strategy of the index,
providing evidence of which assets track more accurately the aggregate index. We

leave a detailed analysis of this last topic for further research.

Individual model estimates
We estimate a Normal GARCH(1,1) model and a t-GARCH(1,1) model via
maximum likelihood (ML) using rolling samples of 1250 trading days (about five years)

for each stock return:

Yit = i+ RiGit (29)
Ky = Bio+ 00y + k7, (30)

where y;; is the log return of stock i at day ¢, (;z ~ N(0,1) and (¢ ~ T (v;) for the
Normal and t-Student cases, respectively. The number of degrees of freedom v; is
estimated in the latter model. We produce 784 one day ahead density forecasts from
January 1, 2007 to December 31, 2009 using the above equations and the first day
ahead forecast refers to January 1, 2007. Our out-of-sample (OOS) period is associated
with high volatility driven by the US financial crisis and includes, among others, events
such as the acquisitions of Bern Stearns, the default of Lehman Brothers and all the
following week events. The predictive densities are formed by substituting the ML
estimates for the unknown parameters (¢;, 60, 0;1, 0i2, v;)-

As first step, we apply a sequential cluster analysis to our forecasts. We compute
two clusters for the Normal GARCH(1,1) model class and two clusters for the t-
GARCH(1,1) model class. The first two are characterized by low and high volatility
density predictions from Normal GARCH(1,1) models; the third and the fourth ones
are characterized by thick or no thick tail density predictions from ¢-GARCH(1,1)
models.> A detailed description of the cluster dynamics is given in section B.4 the

Online Appendix.

Weight patterns, model incompleteness and signals of instability
For convenience, we specified the parameter matrices By in equation (11), the

cluster weights, as equal weights.*

We also allow for model incompleteness to be
modeled as a time-varying process and estimate o7, in (5). We label it DCEW-SV

and compare it with a combination scheme where a,%t = O'l% is time-invariant and label

3Low degrees of freedom occur jointly with a large scale and high degrees of freedom occur jointly
with a low scale.
4See the macroeconomic case below for a comparison with a different scoring rule.
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that as DCEW. We compare our two combination methods, DCEW and DCEW-SV
described in section 5.1 to the standard no predictability white noise benchmark and
also apply the Normal GARCH(1,1) model and the t-Student GARCH(1,1) model
to the index log returns. The comparison is done by applying the predictive ability
measures defined in Appendix B.3.

Plots of the estimated weights zj; defined in Corollary 3.1 are shown in Figure
3. The same figure shows the De Finetti’s diagrams for a pairwise comparison of the
weight dynamics. In the diagrams the blue line represents the trajectory of the ternary
(2its 2jts 2—(i,4),0) Where 2_ 5y = D1 5 214 18 the other model total weight. The red
and black dots are the initial and final values.

One can distinguish three different subperiods. In the subperiod before the crisis,
the Normal GARCH cluster with high volatility, cluster 2, and the t-GARCH cluster
with low degrees of freedom, cluster 3, have almost equal high weights while clusters
1 and 4 play a much less important role. In the crisis period of 2008, cluster 3 receives
almost all the weight with clusters 1 and 2 almost none. Some of the assets lead
the large market decrease in that period. This results in very fat tail densities and
our combination scheme takes advantage of this information and assigns to cluster 3
more weight. RW and GARCH forecasts based on the index are less informative and
before these models can show forecasts of negative returns they need evidence that the
index is declining. In the period after the Lehman Brothers collapse cluster 3 receives
again a substantial weight while the normal cluster 2, with large variance, is getting
gradually more weight. Summarizing, it is seen that the t-GARCH(1,1) cluster with
small degrees of freedom has most of the period the largest weight. What implications
this may have for constructing model combinations that forecast more accurately is a
topic for further research.

Signals of model incompleteness and instability are shown in the top right panel of
Figure 3 where plots of the posterior mean estimate for a,%t in the DCEW-SV scheme
are presented. The estimates have a 7% increase in September 2008, which is due
to the default of Lehman Brothers and related following events. Interestingly, the
volatility does not reduce in 2009, a year with large positive returns opposite the large
negative returns in 2008.

From the results so far, we conclude that the combination of several time-varying
volatility models with time-varying cluster weights copes with instability in our set
of data. There is a clear signal of increased model incompleteness after the 2008
crisis. Individual flexible models that focus more on jumps in volatility and use data

on realized volatility may be included in the analysis. This is an interesting topic of
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Figure 3: Top left: the mean logistic-normal weights for the two normal GARCH clusters,
labeled in the graph “Norm1” and “Norm2”, and for the two t-GARCH clusters, labeled in
the graph “t3” and “t4”. Top right: posterior mean estimate for oy in the scheme DCEW-SV.
Other rows: De Finetti’s diagram for the pairwise subcomposition comparison between model
weights over time. In each plot the trajectory of the ternary (2, 2j¢, 2—(; jye), j > @ (blue line),
the starting point (red dot), the ending point (black dot) and the equal weight composition
(square).
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further research.

Forecast accuracy and economic value

Out-of-sample forecasting result are presented in Table 1. Our combination
schemes produce the lowest RMSPE and CRPS and the highest LS. The results
indicate that the combination schemes are statistically superior to the no predictability
benchmark. The Normal GARCH(1,1) model and t--GARCH(1,1) model fitted on the
index also provide more accurate density forecasts than the WN, but not on point
forecasting. For all three score criteria, the statistics given by the two individual
models are inferior to our combination schemes. Therefore, we conclude that our
strategy to produce forecasts from a large set of assets, cluster them in groups
and combine them to predict the S&P500 produces very accurate point and density
forecasts that are superior to no predictability benchmark and classical strategies of
modeling directly the index.

Apart from forecasting accuracy, we investigate whether the results documented in
the previous paragraphs also possess some economic value. Given that our approach
produces complete predictive densities for the variable of interest, it is particularly
suitable to compute tail events and, therefore, Value-at-Risk (VaR) measures, see
Jorion (2006). We compare the accuracy of our models in terms of violations, that is
the number of times that negative returns exceed the VaR forecast at time ¢, with the
implication that actual losses on a portfolio are worse than had been predicted. Higher
accuracy results in numbers of violation close to nominal value of 1%. Moreover, to
have a gauge of the severity of the violations we compute the total losses by summing
the returns over the days of violation for each model.

The last two columns of Table 1 show that the number of violations for all models
is high and well above 1%, with the RW higher than 20%. The dramatic events in our
sample, including the Lehman default and all the other features of the US financial
crisis, explain the result. However, the two combination schemes provide the best
statistics, with violations almost 50% lower than the best individual model and losses
at least 15% lower than the best individual models. The DCEW-SV provides the
most accurate results, but the difference with DCEW is marginal. The property of
our combination schemes to assign higher weights to the fat tail cluster 3 helps to
model more accurately the lower tail of the index returns and covers more adequately
risks.

Finally, Table B.6 in Appendix B.6 compares the execution time of the GPU

parallel implementation of our density combination strategy and the CPU multi-core

20



implementation and show large gains from GPU parallelization.

RMSPE LS CRPS Violation Loss

WN 1.8524  -9.0497  0.0102 20.3% -50.1%
Normal GARCH 1.8522 -4.1636™* 0.0096** 16.5% -42.2%
t-GARCH 1.8524  -2.7383** 0.0094** 11.4% -32.9%
DCEW 1.8122** 2.2490** 0.0091** 6.6% -28.1%
DCEW-SV 1.8165** 2.2060** 0.0091** 6.5% -27.7%

Table 1: Forecasting results for next day S&P500 log returns. For all the series are
reported the: root mean square prediction error (RMSPE), logarithmic score (LS) and the
continuous rank probability score (CRPS). Bold numbers indicate the best statistic for each
loss function. One or two asterisks indicate that differences in accuracy from the white noise
(WN) benchmark are statistically different from zero at 5%, and 1%, respectively, using the
Diebold-Mariano t-statistic for equal loss. The underlying p-values are based on t-statistics
computed with a serial correlation-robust variance, using the pre-whitened quadratic spectral
estimator of Andrews and Monahan (1992). The column “Violation” shows the number of
times the realized value exceeds the 1% Value-at-Risk (VaR) predicted by the different models
over the sample and the column “Loss” reports the cumulative total loss associated to the
violations.

5.2 A large macroeconomic dataset

As a second example, we consider the extended Stock and Watson (2005) dataset,
which includes 142 series sampled at a quarterly frequency from 1959Q1 to 2011Q2.
A graphical description of the data is given in Figure B.3, in section B.5 of the Online
Appendix. The dataset includes only revised series and not vintages of real-time data,
when data are revised. See Aastveit et al. (2014) for a real-time application (with
a dataset that includes fewer series) of density nowcasting and on the role of model
incompleteness over vintages and time. In order to deal with stationary series, we
apply the series-specific transformation suggested in Stock and Watson (2005). Let
yie withi=1,....,nand t =1,...,T, be the set of transformed variables.
For each variable we estimate a Gaussian autoregressive model of the first order,
AR(1),
Yit = i + Biyir—1 + Git,  Cit ~ N(0,07) (31)

using the first 60 observations from each series. Then we identify the clusters
of parameters by applying our k-means clustering algorithm on the vectors, 0, =
(&, B, 62)', of least square estimates of the AR(1) parameters. Since we are interested
in an interpretation of the clusters over the full sample, differently than in the previous

financial application, we impose that cluster allocation of each model is fixed over the
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forecasting vintages, i.e. =, = Z, t = 1,...,T. The first 102 observations, from
1959Q3 to 1984Q1, are used as initial in-sample (IS) period to fit AR(1) models to
all the individual series and construct the clusters. We assume alternatively 5 and 7
clusters. A detailed description of the 7 clusters is provided in Table B.4 in section

B.5 of the Online Appendix, together with further results.

Set-up of the experiment

We split the sample size 1959Q3-2011Q2 in two periods. The initial 102
observations from 1959Q3-1984Q1 are used as initial in-sample (IS) period; the
remaining 106 observations from 1985Q1-2011Q2 are used as an OOS period. The AR
models are estimated recursively and h—step ahead (Bayesian) t—Student predictive
densities are constructed using a direct approach extending each vintage with the new
available observation; see for example Koop (2003) for the exact formula of the mean,
standard deviation and degrees of freedom. Clusters are, however, not updated and
kept the same as the ones estimated in the IS period.

We predict four different series often considered core variables in monetary policy
analysis: real GDP growth, inflation measured as price deflator growth, 3-month
Treasury Bill rate and total employment. We consider h = 1, 2, 3, 4, 5 step-ahead
horizons. For all the variables to be predicted, we apply an AR(1) as benchmark
model.

As we described in Section 2, we consider two alternative strategies for the
specification of the parameter matrices Bys: equal weights and score recursive weights,
where in the second case we fix g; = LS;, for the various horizons h presented in the
following subsection. Further, the predictive densities can be combined with each
of the four univariate series and/or with a multivariate approach. Following the
evidence in Appendix B.5 we apply two clusters, k = 5 and 7. We note that we keep
the volatility of the incompleteness term constant. To sum up, we have eight cases
defined as UDCEWS5 (univariate combination based on 5 clusters with equal weights
within clusters), MDCEWS5 (multivariate combination based on 5 clusters with equal
weights within clusters), UDCLS5 (univariate combination based on 5 clusters with
recursive log score weights within clusters), MDCLS5 (multivariate combination based
on 5 clusters with recursive log score weights within clusters), UDCEW?7 (univariate
combination based on 7 clusters with equal weights within clusters), MDCEW?7
(multivariate combination based on 7 clusters with equal weights within clusters),
UDCLS7 (univariate combination based on 7 clusters with recursive log score weights

within clusters), MDCLS7 (multivariate combination based on 7 cluster with recursive
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log score weights within clusters).

Apart from the AR(1) benchmark we also compare our combinations to a
benchmark that is specified as Dynamic Factor Model (DFM) with 5 factors described
in Stock and Watson (2012). This DFM expresses each of the n time series as
a component driven by the latent factors plus ad idiosyncratic disturbance. More
precisely:

ve = Ay + e, O(L)f =mn,, (32)

where the y; = (y14,...,Yn¢)" is an n x 1 vector of observed series, f; = (fi4,..., frt)
is an 7 vector of latent factors, A is a n x r matrix of factors loadings, ®(L) is an r x r
matrix lag polynomial, e; is an n vector of idiosyncratic components and 7, is an r
vector of innovations. In this formulation the term Af; is the common component of
y:. Bayesian estimation of the model described in equation (32) is carried out using

Gibbs Sampling given in Koop and Korobilis (2009).

Weight patterns and forecasting results

Table 2 reports the results to predict real GDP growth, inflation measured by
using the price deflator of GDP growth, 3-month Treasury Bills and total employment
for five different horizons and using three different scoring measures. For all variables,
horizons and scoring measures our methodology provides more accurate forecasts than
the AR(1) benchmark and the Bayesian DFM. The Bayesian DFM model provides
more accurate forecasts than the AR(1) for real GDP and inflation at shorter horizons
and gives mixed evidence for interest rates and unemployment, but several of our
combination schemes outperform this benchmark. The combination that provides the
largest gain is the multivariate one based on seven clusters and log score weights
within clusters (MCDLS7), resulting in the best statistics 56 times over 60. In most of
the cases, the difference is statistically credible at the 1% level. This finding extends
evidence on the scope for multi-variable forecasting such as in large Bayesian VAR,
see e.g. Banbura et al. (2010) and Koop and Korobilis (2013). Fan charts in Figure
B.8 in the Appendix B.5 show that the predictions are accurate even at our longest
horizon, h = 55. The variable with low predictive gains is inflation, although our
method provides credibly more accurate scores at (at least) 5% credible level in 8
cases over 15, but none in terms of point forecasting. The multivariate combination
based on 5 clusters and equal weights yields accurate forecasts, see clusters MCDEWS5.
We conclude that combining models using multiple clusters with cluster-based weights
provides substantial forecast gains in most cases. Additional gains may be obtained by

playing with a more detailed cluster grouping and different performance scoring rules
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h=1 h=2 h=3 h=4 h=5
PE LS CRPS PE LS CRPS PE LS CRPS PE LS CRPS PE LS CRPS
RGDP
AR 0.647 -1.002 0.492 0.658 -1.005 0.496 0.671 -1.007 0.501 0.676 -1.009 0.503 0.682 -1.009 0.506
BDFM 0.649 -1.091 0.382** 0.651 -1.066 0.385"* 0.654 -1.138 0.388"* 0.652 -1.060 0.384"" 0.655 -1.099 0.388""
UDCEWS5 0.644  -0.869  0.333™" 0.655 -0.893  0.340"" 0.657* -0.900 0.341** 0.655" -0.902 0.341"" 0.658" -0.912 0.343""
MDCEW50.630 -0.928 0.326™* 0.645 -0.987 0.336"* 0.638* -0.924 0.330** 0.637* -0.897 0.328"* 0.636" -0.844 0.324"
UDCLS5 0.773 -1.306 0.464 0.663 -1.275 0.433"* 0.687 -1.339 0.446"* 0.689 -1.327 0.448"* 0.715 -1.380 0.481
MDCLS5 0.725 -1.145 0.505 0.591% -1.071 0.365"" 0.581*" -1.041 0.340"* 0.591*" -1.079 0.354"" 0.557" -1.005 0.358""
UDCEWT7 0.649 -0.875 0.334™ 0.652 -0.880 0.335"* 0.655 -0.889 0.337** 0.654 -0.886 0.336"* 0.657" -0.891 0.338""
MDCEW70.642 -0.979 0.334™" 0.648 -1.012 0.338"* 0.652* -1.016 0.342* 0.651 -1.015 0.339"* 0.654" -1.009 0.342**
UDCLS7 0.646 -0.868* 0.332** 0.645 -0.905 0.338"* 0.650* -0.918 0.341** 0.655 -0.939 0.352*" 0.657" -0.914 0.342**
MDCLS7 0.596* -0.586"* 0.275"* 0.586" -0.582"*0.275"* 0.607**-0.632"* 0.288"* 0.588" -0.637"*0.287"* 0.610"* -0.634"" 0.286""
GDP deflator
AR 0.220 -0.933 0.356 0.214 -0.932 0.357 0.206 -0.932 0.358 0.207 -0.932 0.359 0.208 -0.932 0.361
BDFM 0.220 -0.676** 0.123* 0.214 -0.225 0.441 0.221 -0.768*" 0.373 0.223 -1.005 0.378 0.276 -1.072 0.382
UDCEWS5 0.230 -0.429 0.169 0.220 -0.427 0.167 0.212 -0.422 0.165 0.214 -0.425 0.166 0.213 -0.426 0.166
MDCEW50.204 -0.053 0.110* 0.205 -0.285 0.115 0.203 -0.234 0.114 0.202 -0.167 0.112 0.204 -0.194 0.113
UDCLS5 0.485 -1.085 0.354 0.313 -1.001 0.294 0.259 -0.873 0.250 0.241 -0.875 0.248 0.228 -0.892 0.252
MDCLS5 0.291 -0.280 0.309 0.161 0.003 0.143%* 0.143 0.031 0.125"* 0.132  0.072 0.122* 0.159 -0.226 0.147"
UDCEWT7 0.223 -0.425** 0.166™* 0.214 -0.420 0.164** 0.207 -0.416 0.163 0.209 -0.416" 0.163* 0.210 -0.416 0.164
MDCEW70.208 -0.214** 0.115** 0.200* -0.186* 0.111** 0.197* -0.172** 0.109** 0.197 -0.175° 0.110* 0.199 -0.200 0.111
UDCLS7 0.235 -0.507"" 0.179*" 0.220 -0.519 0.180"* 0.224 -0.514 0.179 0.221 -0.516 0.179 0.214 -0.475 0.171
MDCLS7 0.197 0.436"* 0.098"*0.183 0.462"" 0.092"*0.165 0.571* 0.083* 0.160 0.570"" 0.082**0.175 0.495 0.088
3-month Treasury Bills
AR 0.569 -1.058 0.363 0.605 -1.074 0.374 0.518 -1.038 0.343 0.530 -1.037 0.353 0.545 -1.041 0.358
BDFM 0.522* -1.190 0.359 0.694 -1.394 0.386 0.545 -1.092 0.392 0.552 -1.092 0.396 0.541 -1.089 0.401
UDCEWS5 0.519  -0.778"* 0.288** 0.521 -0.782** 0.288 0.509 -0.772"" 0.283 0.517 -0.782** 0.288" 0.525 -0.791"" 0.292"
MDCEWS50.517** -0.764** 0.285** 0.506 -0.752** 0.279** 0.502* -0.749**0.276"*0.506"*-0.755"* 0.278"* 0.505** -0.751** 0.278"*
UDCLS5 0.740 -1.254 0.448 0.678 -1.301 0.453 0.532 -1.210 0.381 0.528 -1.216 0.385 0.584 -1.286 0.424
MDCLS5 0.710 -1.322 0.491 0.688 -1.297 0.454 0.491*" -1.143 0.346 0.487 -1.143 0.351 0.572** -1.196 0.378
UDCEWT7T 0.525 -0.783** 0.289* 0.526 -0.784** 0.289* 0.514 -0.768"* 0.284* 0.518 -0.774"* 0.286" 0.522 -0.786"* 0.289*
MDCEW70.526 -0.775** 0.289* 0.527 -0.777** 0.290* 0.515 -0.761** 0.283* 0.516 -0.765"* 0.284" 0.513 -0.766"" 0.283"
UDCLS7 0.512 -0.773"" 0.284™ 0.521 -0.799*" 0.291" 0.514 -0.770"" 0.284" 0.519 -0.783"* 0.286" 0.521 -0.793"" 0.289"
MDCLS7 0.488**-0.725"* 0.270** 0.484"* -0.771** 0.275* 0.515"*-0.755"* 0.283 0.513"* -0.771** 0.283 0.496"*-0.736"" 0.275""
Employment

AR 0.564 -0.995 0.447 0.582 -0.999 0.454 0.597 -1.003 0.460 0.612 -1.007 0.464 0.622 -1.009 0.468
BDFM 0.571 -1.064 0.339** 0.565 -1.057 0.614 0.956 -1.192 0.907 0.724 -1.226 0.922 0.876 -1.892 0.998
UDCEWS5 0.585"* -0.906"* 0.308** 0.582%* -0.889** 0.307** 0.579 -0.955"" 0.305"* 0.584 -0.931** 0.308"* 0.587 -0.951"* 0.311*"
MDCEWS50.541** -0.926** 0.277** 0.554** -0.960** 0.284** 0.558 -0.917** 0.285"* 0.560"* -0.740"* 0.284"* 0.571** -0.790** 0.294**
UDCLS5 0.752 -1.301 0.456 0.548 -1.265 0.414 0.565 -1.305 0.426 0.648 -1.372 0.472 0.628 -1.335 0.438
MDCLS5 0.654 -1.180 0.568 0.416 -0.964 0.325 0.487 -1.010 0.338 0.478" -0.976 0.340 0.569 -1.076 0.360
UDCEWT7 0.535** -0.801** 0.283** 0.555"* -0.828* 0.290"* 0.570 -0.854"* 0.298** 0.577 -0.867"* 0.303"* 0.583* -0.881** 0.306**
MDCEW?70.523* -0.735" 0.266™* 0.548"* -0.775"* 0.278"* 0.565 -0.827** 0.288"* 0.571 -0.855"* 0.293"* 0.578" -0.885"* 0.297**
UDCLS7 0.552* -0.767"* 0.289™" 0.535"" -0.805"" 0.294"* 0.562 -0.849"" 0.302** 0.572 -0.878"* 0.320"* 0.588" -0.895"* 0.313""

MDCLS7 0.516**-0.452"* 0.236"* 0.440"* -0.437"* 0.219"* 0.507 -0.479"*0.237"* 0.495" -0.488"*0.241"* 0.560"* -0.680"" 0.275""

Table 2: Forecasting results for h steps ahead. For all the series: root mean square prediction
error (PE), logarithmic score (LS) and the continuous rank probability score (CRPS). Bold
numbers indicate the best statistic for each horizon and loss function. One or two asterisks
indicate that differences in accuracy versus the AR benchmark are statistically different from
zero at 5%, and 1%, respectively, using the Diebold-Mariano t-statistic for equal loss. The
underlying p-values are based on t-statistics computed with a serial correlation-robust variance,
using the pre-whitened quadratic spectral estimator of Andrews and Monahan (1992).

for weights associated with models inside a cluster. Figure 4 shows the De Finetti’s
diagram of the two largest weights in the seven clusters for each of the variables to be
predicted and a selection of horizons, h = 1, 2, 5, using multivariate combinations and
assuming by ;; equal to the recursive log score for model 4 in cluster j when predicting
the series k. The diagrams show a substantial time stability of the two largest weights,
a weight composition that is far from the equal weight case and a substantial relevance
of the sizth cluster for all variables and horizons.

From the analysis of the weight time patterns in Figure 5 (see Figure B.6 in
Appendix B.5 for weights in the univariate combination), we notice that the weights

for the univariate are often less volatile than the weights in the multivariate approach.
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All figures confirm he result that the sizth cluster has the largest weight, but several
other clusters have large positive weights, like clusters 2, 4, and 5 while clusters 1 and
7 do not receive much weight. Apparently, variables such as Exports, Imports and
GDP deflator included in the sixth cluster play an important role in forecasting GDP
growth, inflation, interest rate and employment, although this role may differ across

variables and horizons.
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Figure 4: De Finetti’s diagrams for the dynamic comparison of the two largest weights. Rows:
diagrams for the four series of interest (real GDP growth rate, GDP deflator, Treasury Bills,
employment). Columns: forecast horizons (1, 3 and 5 quarters). In each plot the trajectory
(blue line), the starting (red) and ending (black) points and the equal weight composition
(square).

The forecast gains are similar across horizons for the five variables, that is around
10% relative to the AR benchmark in terms of RMSPE metrics and even larger
for the log score and CRPS measures. The lowest improvements are evident when
predicting the 3-month Treasury Bills. Despite these consistent gains over horizons,
the combination weights in Figure 5 differ across horizons. For example, when
forecasting GDP growth (panel 1) cluster 4 has a weight around 20% at horizons
1 and 5, but half of this value at horizon 3, where clusters 2 and 5 have larger weights.
The change is even more clear for inflation, where cluster 2 has a 20% weight at
horizon 1 and increases to 40-45% at horizon 5. The latter case also occurs when

there is substantial instability over time. Changes over horizons are less relevant for
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Figure 5:

In each plot the logistic-normal weights (different lines) for the multivariate

combination model are given. Rows: plot for the four series of interest (real GDP growth
rate, GDP deflator, Treasury Bills, employment). Columns: forecast horizons (1, 3 and 5

quarters).
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the other two predicted variables.

Figure B.7 in the Online Appendix shows a typical output of the model weights
(bg,ij) in the seven clusters. There are large differences across clusters: the clusters
2, 4, 5 and 6 have few models with most of the weights; the other clusters, 1, 3 and
7, have more similar weights across models. This finding should be associated with
the largest weights in Figure 5 for the clusters 2, 4, 5 and 6 and indicates that using
recursive time-varying by, ;; weights within the clusters increases forecast accuracy for
GDP growth relative to using equal weights. Figure B.7 also indicates that the weights
within clusters are much more volatile than the cluster common component, indicating
that individual model performances may change much over time even if information
in a given clusters is stable.

Evidence is similar for the GDP deflator and employment, but this finding is less
clear for bond returns. For this variable, MDCEWS also predicts accurately. Also
notice that cluster 3, which includes the 3-month Treasury Bills, has the lowest weight
in Figures 5. The explanation appears to be that the returns on the 3-month Treasury
Bills are modeled with an AR model, which is probably less accurate for the series.
Furthermore, the third cluster also contains stock prices and exchange rates that are
different from other series with very low persistence and high volatility, making our
combination to interpret this cluster more like a noisy component.

We conclude that the cluster-based weights contain relevant signals about the
importance of the forecasting performance of each of the models used in the these
clusters. Some clusters have a substantial weight while others have only little weight
and such a pattern may vary over long time periods. This may lead to the construction
of alternative model combinations for more accurate out-of-sample forecasting and is

an interesting line of research to pursue.

6 Conclusions

We proposed in this paper a Bayesian nonparametric model to construct a time-varying
weighted combination of many predictive densities that can deal with large data sets in
economics and finance. The model is based on clustering the set of predictive densities
in mutually exclusive subsets and on a hierarchical specification of the combination
weights. This modeling strategy reduces the dimension of the parameter and latent
spaces and leads to a more parsimonious combination model. We provide several
theoretical properties of the weights and propose the implementation of efficient and

fast parallel clustering and sequential combination algorithms.
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We applied the methodology to large financial and macro data sets and find
substantial gains in point and density forecasting for stock returns and four key macro
variables. In the financial applications, we show how 7000 predictive densities based
on US individual stocks can be combined to replicate the daily Standard & Poor 500
(S&P500) index return and predict the economic value of tail events like Value-at-
Risk. In the macroeconomic exercise, we show that combining models for multiple
series with cluster-based weights increases forecast accuracy substantially; weights
across clusters are very stable over time and horizons, with an important exception
for inflation at longer horizons. Furthermore, weights within clusters are very volatile,
indicating that individual model performances are very unstable, strengthening the
use of density combinations.

The line of research presented in this paper can be extended in several directions.
For example, the cluster-based weights contain relevant signals about the importance
of the forecasting performance of each of the models used in the these clusters.
Some clusters have a substantial weight while others have only little weight and
such a pattern may vary over long time periods. This may lead to the construction
of alternative model combinations for more accurate out-of-sample forecasting and
improved policy analysis. We notice also a potential fruitful connection between our

approach and research in the field of dynamic portfolio allocation.
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A Appendix

A.1 Proofs of the results in sections 2 and 3

Proof of Proposition 2.1 The marginal predictive density is obtained by integrating
out the predictors with respect to their distributions. Under regularity condition it is

possible to exchange the order of integration and obtain

def COTT e e
fiamatwie) [ fuatunel ) TT £ Goe) i (A.33)
j=1
= we /}R F i, o) T F5e(Gie)diije (A.34)
i=1 Jj=1
= Zwk,it/Rf(ykt@itaGl%t)fit(git)dgit (A.35)
=1

where f(y|0,0?) is the pdf of the normal distribution N'(9,02). Now, by letting
o2, — 0 for all k, one has that fi;(yx) converges to

> whit /R Sgse (Wie) fit (i) dse = > wi e fit (Uit (A.36)
=1 =1

k=1,...,K.
Proof of Proposition 3.1 See Aitchinson and Shen (1980), Section 2.
Proof of Corollary 3.1 It follows from 3.1 by taking v = vi; and z = zj.

Proof of Proposition 3.2 It follows from a direct application of the results in Aitchinson
and Shen (1980), Section 2.

Proof of Proposition 3.3 From equations 5-9 it is easy to show that the measurement
density for each variable of interest is ygr ~ N (¥iSkt, 05,) With sge ~ My (1, W),
k=1,...,K, where M, (1, wy;) denotes a multinomial distribution, and due to the
conditional independence assumption one gets the joint measurement density as the
product of the variable specific densities.

As regards the transition density, first observe that, thanks to proposition
3.1, ziy = Ch(exp(vyt)) follows Ly—1(DimVit—1, D X D),). Then note that the
multivariate transform z;x = 37 &ijrebijrvine, § = 1,...,m, i = 1,....n

implies that xp = ApVie, Xkt ~ No(ApeVie—1, A YpAL,), with Ay = (E¢ o Byy)
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and that, from Proposition 3.1, Cy(Agvy:) follows L,—1(DypAktVii—1, DnYrD),).
Without loss of generality, we assume that Bg; = tnt), and that the n — g
elements in the cluster m correspond to the last m — 7; element of ¥;. This
implies the following partition of =, = ((Z¢, Os,x1), (On—ne)x(m-1)> tn—;)) and of

' = ((Agt, Onyx1)', (On—y)x (m—1)> tn—n;)"), where (Zt, Os,x1) and (Ags, Oz, 1) are
a (n; x m) matrices. Note that

DpApe = (In-1,—tn—1)((Art, (Or,x1), (O x(m—1)» b))’

= ((Akl‘d _Lﬁz)coznfﬁtfl)xrn)/

= ( ~§ct? Oznfﬁtfl)x(mfl)),Dm

The result then follows by applying Proposition 3.2 to the set of weights z; .,

j=1,...,m— 1, with transform coefficients A = (4}, Ozn_ﬁt)x(m_l))’.

Proof of Corollary 3.2 The representation follows directly from the application of
Proposition 3.1 to xg ~ Ny (AptVier—1, At TrAl,)-

A.2 Sequential Clusering

The sequential clustering algorithm is summarized as follows. Let cjo, j = 1,...,m,
an initial set of random points and let cj;, j = 1,..., m be the centroids, defined as
1
Cjt = > b
It ieNy,

where nj; and Nj; have been define in the previous sections. At time ¢ + 1 a new
set of observations ;.| € R i = 1,...,n is assigned to the different m groups
of observations based on the minimum distance, such as the Euclidean distance,
|| - ||, between the observations and the centroids c;; € R?, j = 1,...,m. Assume
gi =argmin{j = 1,...,m|||¥p;; — cj||}, i = 1,...,n, then the allocation variable &;;;

is equal to 1 if j = j; and 0 otherwise and the centroids are updated as follows

Cjt+1 = Cjt + )\t(mjt+1 — Cjt) (A.37)
where )

and ¢ € [0,1]. Note that the choice \¢ = nji+1/(n§;, + nje+1), with ng, = S nys,
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implies a sequential clustering with forgetting driven by the processing of the blocks

of observations. In the application we fix A = 0.99.

A.3 Nonlinear sequential filtering
Each particle set @{ = {wf gl ,’yfj fil, j=1,..., M, is updated through the following
steps.

1. Conditional combination weights. The approximated state predictive density is

N
0 ~J 0 0 ~J \xtJ 0
pij(WtJrl’yl:tvyjl:t) = ZP(WtH‘Wt7Y1:t7yj1:t)7zjdwfij (wy) (39)
i=1
2. Conditional prediction. The predictive density allows us to obtain the weight

predictive density

N
i g 0
pN,j(Zt+1\Y1:t+17y]1;t+1) = ;7;115“,% (Wt+1) (40)
1=
where 7211 x ’yzj p(ytﬂlwffl, 5/{ 41) is a set of normalized weights, and the observable

predictive density

N
PN WY1, T 1) = Z’Vtiiléyﬁ_l(yt+1) (41)
i=1
where yzil has been simulated from the combination model p(yt+1\wfiji, Sf{ +1)
independently for i =1,..., V.
3. Resampling. Since the systematic resampling of the particles introduces extra
Monte Carlo variations and reduces the efficiency of the importance sampling
algorithm, we do resampling only when the effective sample size (ESS) is below a
given threshold. See Casarin and Marin (2009) for ESS calculation. At the ¢ + 1-th
iteration if ESS{+1 < K, simulate (ID{H = {wfﬁj,fﬁil N | from {wffi,*yfil N (eg.,
multinomial resampling) and set ﬁzil = 1/N. We denote with k; the index of the i-th
re-sampled particle in the original set @{ 4 I ESS{ 41 > kset @{ 1= {wfijl, ﬁzil N
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B Online Appendix

B.1 Simulation example

To provide a graphical illustration of our compositional factor model, a simulated
example is presented. Let there be only one variable of interest y1; = y:, with values

given by the combination of five predictors (i.e. K =1 and n = 5)
5
ye =Y st +er, e~ N(0,02) (B.42)
i=1

t=1,...,T, where g; ~ N(4,0.17) i.i.d. i = 1,...,5 are the predictive distributions,
(81t7 ceey S5t)/ ~ Mn (17 (81t7 ceey 85t))7 a'nd

Wi 10 -1 St
way 10 -1 Z1t Gt
wy | =101 =1 O 200 | D] <3¢ (B.43)
Wyt 01 -1 23t Sat
Wst 00 O Sht
with (14, 21, $3¢,54¢)" ~ L£4(04,0.1D5Df) i.d.d. and ¢5p =1 — g1y — ... — quy.

For expository purposes, in order to show graphically the relationship between the
components of w, which are on the 4-dimension simplex, we assume w; is a transform
of z; with some noise. The dynamics of the latent factors on the simplex of dimension

2 are given by

21t 4 1 21t—1 Mt
| =5 L@ e [B] m2 (B.44)
Z3¢ 1 Z3t—1 13t

with (914, m2t) ~ L2(02,0.2D3D%) i.i.d. and ng = 1—n1,—n2. We generate a trajectory
of T'= 500 points from the latent factor process (blue line in the top-left chart of Fig.
B.1) starting at zg = ¢3/3 (black dot). The top-right chart of the same figure shows
the scatter plot of wy;, k = 2, 3,4 against the first weight wq;. One can easily see that
wsy moves along the same direction of wy¢, that is it lies on the 45-degree line, whereas
w3 and wyg move together and their relationship with wy; reflects the relationship
between z; and zo;. The bottom-left chart shows the trajectory of y; which exhibits a
change in mean and variance following the features of the largest combination weight

at time ¢ (see bottom-right chart).
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Figure B.1: Simplicial random walk trajectory z; (top-left), scatter plot of elements of the
latent weight vector w; (top-right), observable process y; (bottom-left) and the largest weight
indicator w; = max{wy,, k= 1,...,5} (bottom-right).

B.2 Sequential approximation of combination weights and predictive

densities
B.2.1 Parallel sequential filtering

With regard to the filtering part, we use M parallel conditional SMC filters, where

each filter is conditioned on the predictor vector sequence ¥, s = 1,...,t. We initialise

independently the M particle sets: ®)) = {w0 I 30N j=1,...,M. Each particle

set @6 contains N i.i.d. random variables Wg "/ with random weights ’yéj . We initialise
the set of predictors, by generating i.i.d. samples y{, j=1,...,M, from p(y1|yo)
where y( is an initial set of observations for the variable of interest.

Then, at the iteration t + 1 of the combination algorithm, we approximate the



predictive density p(¥¢4+1]y1:¢) as follows

1

NE

- . L
M (Fes1ly1e) = M = ng(YtH)
where y{H, j=1,...,M, are i.i.d. samples from the predictive densities and ()
denotes the Dirac mass at x.
We assume an independent sequence of particle sets @/ = {Wu 54 N, j=
1,..., M, is available at time t+1 and that each particle set provides the approximation
PN, (Wt Y1taY1t Z% w0 i Wt (B.45)

of the filtering density, p(Wf\ylzt,Sf{:t), conditional on the j-th predictor realisation,
y{:t. Then M independent conditional SMC algorithms are used to find a new sequence
of M particle sets, which include the information available from the new observation
and the new predictors. Each SMC algorithm iterates, for j = 1,..., M, the steps
given in Appendix A.

After collecting the results from the different particle sets, it is possible to obtain

the following empirical predictive density

M N
PN (Yit1ly1e) = ZZ i (yerr) (B.46)

For horizons h > 1, we apply a direct forecasting approach (see Massimiliano et al.,
2006) and compute predictive densities pasn(Yetn|y1:¢) following the steps previously
described.

B.2.2 Parallel sequential clustering

The parallel implementation of the k-means algorithm can be described as follows.
Assume, for simplicity, the n data points can be split in P subsets, N, = {(p —1)n, +
1,...,pnp}, p=1..., P, with the equal number of elements np. P is chosen according

to the number of available cores.
1. Assign P sets of np data points to different cores.

2. For each core p, p=1,..., P



2a. find j; = argmin{j = 1,...,m||[¢p;; — cj||}, for each observation i € N,

assigned to the core p.

2.b find the local centroid updates my, j;11, j =1,...,m
3. Find the global centroid updates mj;41 = 1/P 25:1 my i1, =1,...,m
4. Update the centroids as in Eq. A.37.
The k-means algorithm is parallel in point 2) and 3) and this can be used in the GPU
context as we do in this paper.
B.3 Forecast evaluation

To shed light on the predictive ability of our methodology, we consider several
evaluation statistics for point and density forecasts previously proposed in the
literature. Suppose we have i = 1, ..., n different approaches to predict the variable y.

We compare point forecasts in terms of Root Mean Square Prediction Errors (RMSPE)

RMSPE;, =

where t* =t — ¢+ h, t and ¢ denote the beginning and end of the evaluation period,
and e; 14y, is the h-step ahead square prediction error of model .

The complete predictive densities are evaluated using the Kullback Leibler
Information Criterion (KLIC)-based measure, utilising the expected difference in the
Logarithmic Scores of the candidate forecast densities; see, for example, Mitchell and
Hall (2005), Hall and Mitchell (2007), Amisano and Giacomini (2007), Kascha and
Ravazzolo (2010), Billio et al. (2013), and Aastveit et al. (2014).

The KLIC is the distance between the true density p(yi+n|y1::) of a random
variable y;1; and some candidate density p;(yi+n|y1:t) obtained from the approach
7 and chooses the model that on average gives the higher probability to events that

actually occurred. An estimate of it can be obtained from the average of the sample

information, y¢+1,. .., ¥z 1, o0 P(Yeynly1:e) and pi(yernly1:t):

1
t*

M)~

KLIC;;, = I p(yetnlyre) — Inpi(Yernlyie)] (B.47)

t

Il
I

Although we do not know the true density, we can still compare different densities,

Pi(Yesnly1:t), @ = 1,...,n. For the comparison of two competing models, it is sufficient



to consider the Logarithmic Score (LS), which corresponds to the latter term in the

above sum,

1 t
T > npi(yernlyie) (B.48)

t=t

LS;n =

for all 7 and to choose the model for which it is minimal, or, as we report in our tables
and use in the learning strategies, its opposite is maximal.

Secondly, we also evaluate density forecasts based on the continuous rank
probability score (CRPS); see, for example, Gneiting and Raftery (2007), Gneiting
and Roopesh (2013), Groen et al. (2013) and Ravazzolo and Vahey (2014). The
CRPS for the model ¢ measures the average absolute distance between the empirical
cumulative distribution function (CDF) of y;y, which is simply a step function in

Yt+h, and the empirical CDF that is associated with model i’s predictive density:

+o00 2
CRPS; 1 = / (F() = Typp o0y (2)) 2 (B.49)

—00

_ 1. _
= Ei|Giitn — Yesn| — §Et|y;t+h — i tinl

where I is the CDF from the predictive density p;(yt+n|y1:) of model 7 and g7, ), and
g];t 4, are independent random variables with common sampling density equal to the

posterior predictive density p;(ys+n|y1:t). We report the sample average CRPS:

t
CRPS; ), = —tl* > CRPS; 114 (B.50)
t=t

Smaller CRPS values imply higher precisions and, as for the log score, we report the
average CRPS; j, for each model 7 in all tables.

Finally, following Clark and Ravazzolo (2015), we apply the Diebold and Mariano
(1995) t-tests for equality of the average loss (with loss defined as squared error,
log score, or CRPS). In our tables presented below, differences in accuracy that
are statistically different from zero are denoted by one, two, or three asterisks,
corresponding to significance levels of 10%, 5%, and 1%, respectively. The underlying
p-values are based on t-statistics computed with a serial correlation-robust variance,
using the pre-whitened quadratic spectral estimator of Andrews and Monahan (1992).
Monte Carlo evidence in Clark and McCracken (2015) and Clark and McCracken
(2011) indicates that, with nested models, the Diebold-Mariano test compared against



Subcomponents S&P500
Lower Median Upper

Average -0.002  0.000 0.001 0.000
St dev 0.016  0.035 0.139 0.019
Skewness -1.185  0.033 1.060 -0.175
Kurtosis 8.558 16.327 65.380 9.410
Min -1.322  -0.286 -0.121  -0.095
Max 0.122 0.264 1.386 0.110

Table B.1: Average cross-section statistics for the 3712 individual stock daily log returns
in our dataset for the sample 18 March 2002 to 31 December 2009. The columns “Lower”,
“Median” and “Upper” refer to the cross-section 10% lower quantile, median and 90% upper
quantile of the 3712 statistics in rows, respectively. The rows “Average”, “St dev”, “Skewness”,
“Kurtosis”, “Min” and “Max” refers to sample average, sample standard deviation, sample
skewness, sample kurtosis, sample minimum and sample maximum statistics, respectively.
The column “S&P500” reports the sample statistics for the aggregate S&P500 log returns.

normal critical values can be viewed as a somewhat conservative (conservative in the
sense of tending to have size modestly below nominal size) test for equal accuracy in the
finite sample. Since the AR benchmark is always one of the model in the combination
schemes, we treat each combination as nesting the baseline, and we report p-values
based on one-sided tests, taking the AR as the null and the combination scheme in

question as the alternative.

B.4 Additional details on the financial application

Table B.1 reports the cross-section average statistics, together with statistics for the
S&P500. Some series have much lower average returns than the index and volatility
higher than the index up to 400 times. Heterogeneity in skewness is also very evident
with the series with lowest skewness equal to -42.5 and the one with highest skewness
equal to 27.3 compared to a value equal to -0.18 for the index. Finally, maximum
kurtosis is 200 times higher than the index value. The inclusion in our sample of
the crisis period explains such differences, with some stocks that realized enormously
negative returns in 2008 and impressive positive returns in 2009.

Figure B.2 presents the mean values of the predicted features 1);, which belong
to the j—th cluster at each of the 784 vintages, labeled as mj;1. The clusters for
the Normal GARCH(1,1) models differ substantially in terms of predicted variance
with cluster 1 having a rather low constant variance value over the entire period while
cluster 2 has a variance more than double in size including a shock in the latter
part of 2008. For the t--GARCH(1,1) model it is seen that cluster 3 has a relatively
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Figure B.2: The figures present the average variance of the predictions from the two clusters
for the Normal GARCH(1,1) models based on low (cluster 1) and high (cluster 2) volatility in
the left panel; and the average degree of freedom of the predictions from the two clusters for
the t--GARCH(1,1) models based on low (cluster 3) and high (cluster 4) degrees of freedom in
the right panel. The degrees of freedom are bounded to 30.

constant thick tail over the entire period while cluster 4 has an average value of 10
for the degrees of freedom and in the crisis period the density collapses to a normal
density with degrees of freedom higher than 30. In summary, The Lehman Brother
effect is visible in the figure, with an increase of volatility in the normal cluster 2 and,

interesting, an increase of the degrees of freedom in the t-cluster 4.

B.5 Additional details and on the macroeconomic application

This section reports a detailed description of the cluster composition, in terms of
predictors, for the 5 and 7 clusters analysis of the series given in Fig. B.3, and
additional figures and tables related to their analysis and forecasting results.

The left and right columns in Fig. B.4) show the clusters of series in the parameter
space. The results show substantial evidence of different time series characteristics
in several groups of series. The groups are not well separated when looking at the
intercept values (see Fig. B.4, first and second row). However, the groups are well
separated along two directions of the parameter space, which are the one associated
with the variance and the one associated with persistence parameters (Fig. B.4, last
row). The differences in terms of persistence, in the different groups, is also evident
from the heat maps given in Fig. B.5. Different gray levels in the two graphs show
the value of the variables (horizontal axis) over time (vertical axis). The vertical red

lines indicate the different clusters. One can see for example that the series in the
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Figure B.3: Gray area: the set of series (standardised for a better graphical representation),
at the monthly frequency, of the Stock and Watson dataset. Solid line: growth rate of real
GDP (seasonally adjusted) for the US. Dashed line: inflation measured as the change in the
GDP deflator index (seasonally adjusted). Dotted line: yields on US government 90-day T-
Bills (secondary market). Dashed-dotted: total employment growth rate for private industries
(seasonally adjusted).

2nd and 4th cluster (of 5) are more persistent then the series in the clusters 1, 3 and
5 (see also Fig. B.4, bottom left). Series in cluster 1, 2 and 4 are less volatile than
series in the cluster 3 and 5. This information is also summarised by the mean value of
the parameter estimates for the series that belong to the same cluster. See the values
in Table B.5. Looking at the composition of the predictor groups (see also Tables
B.3-B.4), we find that:

1. The first cluster comprises capacity utilisation, employment variables, housing
(building permits and new ownership started) and manufacturing variables (new

orders, supplier deliveries index, inventories).

2. The second cluster contains exports, a large numbers of price indexes (e.g. prices
indexes for personal consumption expenditures, and for gross domestic product)

some money market variables (e.g. M1 and M2).

3. The third cluster includes real gross domestic product, consumption and
consumption of non-durables, some industrial production indexes, and some
financial market variables (e.g., S&P industrial, corporate bonds and USD -
GBP exchange rate).
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Figure B.4: Pairwise scatter plots of the series features: «; and §; (first row), «; and o2
(second row) and §3; and o? (last row). In each plot the red dots represent the cluster means.
We assume alternatively 5 (left) and 7 (right) clusters.

10



4. The fourth cluster includes imports, some price indexes and financials such as
government debt (3- and 6-months T-bills and 5- and 10-years T-bonds), stocks

and exchange rates.

5. The fifth cluster mainly includes investments, industrial production indexes

(total and many sector indexes), and employment.

11
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5 clusters
Q I3 o’
0.049 0.752 0.270
0.021 -0.074 0.390
0.124 0.157 1.260
0.054 -0.338 1.335
0.100 0.466 0.811

T W N

7 clusters
Q B8 o’
0.109 0.434 0.454
0.185 0.263 0.862
0.019 -0.116 0.224
0.090 -0.321 0.665
0.137 0.091 1.250
0.124 -0.437 1.297
0.026 0.817 0.197

N O U W N

Table B.5: Cluster means for the 5 (top table) and 7 (bottom table) cluster analysis.
The first column, k, indicates the cluster number given in Fig. B.4 and the remaining
three columns the cluster mean along the different directions of the parameter space.

0.8
0.6
s 0.4
S 0.2
40 GSOeISeOS 100 12 40 0 20 4'680er|8€08 100 120 140 0

Figure B.5: Normal cumulative density function for the standardised series. The series are
ordered by cluster label. We assume alternatively 5 (left) and 7 (right) clusters.
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Figure B.6: In each plot the mean logistic-normal weights (different lines) for the univariate
combination model are given. Rows: plot for the four series of interest (real GDP growth rate,
GDP deflator, 3-month Treasury Bills, employment). Columns: forecast horizons (1, 3 and 5

quarters).
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Figure B.7: The plots show the model weights (b ;;) in each cluster (i = j) when forecasting
GDP growth (k = 1) at the 1-step ahead horizon. The first row refers to clusters 1, 2, and 3;
the second row to clusters 4, 5, and 6; the last row to cluster 7.
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Figure B.8: 5-step ahead fan charts for demeaned GDP (top panel) and demeaned GDP

deflator (bottom panel). Estimated mean (solid blue line) and 5% and 95% quantiles (gray
area) of the marginal prediction density. (Demeaned) realizations in red dashed line
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B.6 Computing time

In this section we compare the computational speed of CPU with GPU in the
implementation of our combination algorithm for both the financial and macro
application. Whether CPU computing is standard in econometrics, GPU approach
to computing has been received large attention in economics only recently. See, for
example, Aldrich (2014) for a review, Geweke and Durham (2012) and Lee et al. (2010)
for applications to Bayesian inference and Aldrich et al. (2011), Morozov and Mathur
(2012) and Dziubinski and Grassi (2013) for solving DSGE models.

The CPU and the GPU versions of the computer program are written in MATLAB,
as described in Casarin et al. (2015). In the CPU setting, our test machine is a server
with two Intel Xeon CPU E5-2667 v2 processors and a total of 32 core. In the first
GPU setting, our test machine is a NVIDIA Tesla K40c GPU. The Tesla K40c card is
with 12GB memory and 2880 cores and it is installed in the CPU server. In the second
GPU setting, our test machine is a NVIDIA GeForce GTX 660 GPU card, which is
a middle-level video card, with a total of 960 cores. The test machine is a desktop
Windows 8 machine, has 16 GB of Ram and only requires a MATLAB parallel toolbox
license.

We compare two sets of combination experiments, the density combination based
on 4 clusters with equal weights within clusters and time-varying volatility, DCEW-
SV, see Section 5, and the density combination with univariate combination based on
7 clusters with recursive log score weights within clusters, UDCLS7°, see Section 5.2,
for an increasing number of particles V. In both sets of experiments we calculated, in
seconds, the overall average execution time reported in Table B.6.

As the table shows, the CPU implementation is slower then the first GPU set-up in
all cases. The NVIDIA Tesla K40c GPU provides gains in the order of magnitude from
2 to 4 times than the CPU. Very interestingly, even the second GPU set-up, which can
be installed in a desktop machine, provides execution times comparable to the CPU
in the financial applications and large gains in the macro applications. Therefore, the
GPU environment seems the preferred one for our density combination problems and
when the number of predictive density becomes very large a GPU server card gives

the highest gains.

5The case MCDCLS?7 provide similar relative timing, in absolute terms a bit faster than the
univariate ones.
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DCEW-SV UDCLS7
Draws 100 500 1000 100 500 1000
CPU 1032 5047 10192 5124 25683 51108
GPU1 521 2107 4397 1613 6307 14017
GPU 2 1077 5577 13541 2789 13895 27691
Ratiol 1.98 2.39 2.32 3.18 4.07  3.65
Ratio 2 0.96 0.90 0.75 1.84 1.85 1.85

Table B.6: Observed total time (in seconds) and CPU/GPU ratios for the algorithm on CPU
and GPU on different machines and with different numbers of particles. The CPU is a 32
core Intel Xeon CPU E5-2667 v2 two processors and the GPU1 is a NVIDIA Tesla K40c GPU
and the GPU2 is a NVIDIA GeForce GTX 660. “Ratio 1” refers to the CPU/GPU 1 ratio
and “ratio 2” refers to the CPU/GPU 2 ratios. Number below 1 indicates the CPU is faster,
number above one indicates that the GPU is faster.
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