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Third-order approximation of dynamic models

without the use of tensors

Andrew Binning1,2

17 May 2013

Policy and Analysis Department, Norges Bank, Oslo, Norway

Abstract

I outline a new method for finding third-order accurate solutions to dynamic general equilib-
rium models. I extend the Gomme & Klein (2011) solution for second-order approximations
without using tensors, to a third-order. In particular I derive a third-order matrix chain
rule and use this to solve the third-order approximation. My solution method is easier to
understand and code-up, and faster to implement in Matlab. I provide Matlab code and
demonstrate my solution method with a simple RBC model. The resulting code is up to 80
times faster than Matlab code using tensor notation.

Keywords: Solving dynamic models, third-order approximation, third-order matrix chain
rule

1. Introduction

Non-linear methods for solving DSGE models have become increasingly popular in recent
years. Perturbation methods have become particularly popular due to their relative ease
of implementation and their ability to be used with medium and even large scale models.
Perturbation methods are now widely available in many software packages and as standalone
routines.3 Attention has shifted from second-order to third-order approximations with Van
Binsbergen et al. (2010) showing that third-order approximations are necessary to capture
time varying shifts in risk premia. Most of the software and routines currently available that
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participants at the Norges Bank for their useful comments. All remaining errors are my own.

3Examples of applications include Dynare (see Juillard, 2003), Dynare++ (see Kamenik, 2011), Perturbation
AIM (see Swanson et al., 2006) and codes by Schmitt-Grohe & Uribe (2004), Andreasen (2011), Ruge-Murcia
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solve for third-order approximations use tensor notation.4 Tensor notation can be difficult to
read, difficult to code and in some cases maybe slow to implement. Gomme & Klein (2011)
show, using the Magnus & Neudecker (1999) definition of a Hessian matrix, how to solve a
second-order approximation without tensors. In this paper I extend their method to a third-
order approximation by deriving a third-order matrix chain rule that gives a more efficient
representation of the problem. Because the third-order matrix chain rule is linear in the
unknown coefficients it is straight forward to solve for the unknown third-order coefficients.
I also provide Matlab code for my solution method. The paper is set out as follows; I begin
by covering some preliminaries in section 2, in section 3 I present a third-order matrix chain
rule, and in section 4 I outline the matrix algebra required to find the solution. In section 5 I
demonstrate my method by applying it to a simple RBC model, before I conclude in section
6.

2. Preliminaries

Following Schmitt-Grohe & Uribe (2004) a generic DSGE model can be written in the
form

Et (f (xt+1, yt+1, xt, yt)) = 0, (1)

where xt is an nx × 1 vector of predetermined variables, yt is an ny × 1 vector of non-
predetermined variables, f is a function that maps R2nx+2ny into Rnx+ny, and Et is the
expectations operator conditional on date t information. The total number of variables (and
equations) in the model is n = nx+ ny.

As shown in Schmitt-Grohe & Uribe (2004) the solution of the model will take the form:

yt = g(xt, σ), (2)

xt+1 = h(xt, σ) + σεt+1, (3)

where g maps Rnx into Rny and h maps Rnx into Rnx. The scalar σ ≥ 0 is known as the
perturbation parameter and εt+1 is an nx × 1 vector of shocks. Typically the functions
g and h are unknown, do not have exact analytic forms and are highly non-linear. One
common strategy to find an approximate solution to the model is to take a Taylor series
approximation around the non-stochastic steady state. As mentioned in the introduction, it
has become increasingly popular to take a third-order approximation of the policy functions
thus allowing for the effects of time varying risk and also the incorporation of skewed shocks.
Following such a strategy and deriving a third-order Taylor series approximation of the policy
functions, g and h, would result in the system of equations

yt = gxxt + 1
2
σ2gσσ + 1

2

(
I

ny×ny
⊗ x′t

)
gxxxt

+ 1
6
σ3gσσσ + 1

2
σ2

(
I

ny×ny
⊗ x′t

)
gσσx + 1

6

(
I

ny×ny
⊗ x′t ⊗ x′t

)
gxxxxt, (4)

4See Lan & Meyer-Gohde (2011) and Chen & Zadrozny (2003) for other examples of matrix based solutions
for solving non-linear DSGE models.
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and

xt+1 = hxxt + 1
2
σ2hσσ + 1

2

(
I

nx×nx
⊗ x′t

)
hxxxt

+ 1
6
σ3hσσσ + 1

2
σ2

(
I

nx×nx
⊗ x′t

)
hσσx + 1

6

(
I

nx×nx
⊗ x′t ⊗ x′t

)
hxxxxt + σεt+1, (5)

where gx and hx are the partial derivatives of g and h with respect to xt evaluated at the
non-stochastic steady state, such that

gx
ny×nx

=

 g1,x1 · · · g1,xnx
...

...
gny,x1 · · · gny,xnx

 , hx
nx×nx

=

 h1,x1 · · · h1,xnx
...

...
hnx,x1 · · · hnx,xnx

 ,
with gi representing the policy function for the ith non-predetermined variable, and hi
representing the policy function for the ith predetermined variable. It then follows that
gi,xj = ∂gi(xt,σ)

∂xj,t
|xt=xss, σ=0 and hi,xj = ∂hi(xt,σ)

∂xj,t
|xt=xss, σ=0. These are the coefficient matrices

for the first-order approximate solution. Schmitt-Grohe & Uribe (2004) show that gσ, hσ are
equal to zero when evaluated at the non-stochastic steady state.

The terms: gxx, hxx, and gσσ and hσσ, are the second derivatives of g and h with respect
to x and σ evaluated at the non-stochastic steady state,

gxx
ny.nx×nx

=



g1,x1x1 · · · g1,xnxx1
...

...
g1,x1xnx · · · g1,xnxxnx
g2,x1x1 · · · g2,xnxx1

...
......
...

gny,x1xnx · · · gny,xnxxnx


, hxx

nx2×nx
=



h1,x1x1 · · · h1,xnxx1
...

...
h1,x1xnx · · · h1,xnxxnx
h2,x1x1 · · · h2,xnxx1

...
......
...

hnx,x1xnx · · · hnx,xnxxnx


,

gσσ
ny×1

=

 g1,σσ
...

gny,σσ

 , hσσ
nx×1

=

 h1,σσ
...

hnx,σσ

 ,
with

gi,xjxk = ∂2gi(xt,σ)
∂xj,t∂xk,t

|xt=xss, σ=0, hi,xjxk = ∂2hi(xt,σ)
∂xj,t∂xk,t

|xt=xss, σ=0,

gi,σσ = ∂2gi(xt,σ)
∂2σ

|xt=xss, σ=0, hi,σσ = ∂2hi(xt,σ)
∂2σ

|xt=xss, σ=0 .

These are the coefficient matrices in the second-order approximation. Schmitt-Grohe &
Uribe (2004) show that gσx and hσx are equal to zero when evaluated at the non-stochastic
steady state.
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The terms gxxx, hxxx, gσσx, hσσx gσσσ and hσσσ are the third derivatives of g and h with
respect to xt and σ evaluated at the non-stochastic steady state,

gxxx
ny.nx2×nx

=



g1,x1x1x1 · · · g1,xnxx1x1
...

...
g1,x1xnxx1 · · · g1,xnxxnxx1
g1,x1x1x2 · · · g1,xnxx1x2

...
......
...

g1,x1xnxxnx · · · g1,xnxxnxxnx
g2,x1x1x1 · · · g2,xnxx1x1

...
......
......
...

gny,x1xnxxnx · · · gny,xnxxnxxnx



, hxxx
nx3×nx

=



h1,x1x1x1 · · · h1,xnxx1x1
...

...
h1,x1xnxx1 · · · h1,xnxxnxx1
h1,x1x1x2 · · · h1,xnxx1x2

...
......
...

h1,x1xnxxnx · · · h1,xnxxnxxnx
h2,x1x1x1 · · · h2,xnxx1x1

...
......
......
...

hnx,x1xnxxnx · · · hnx,xnxxnxxnx



,

gσσx
ny.nx×1

=



g1,σσ,x1
...

g1,σσ,xnx
g2,σσ,x1

......
gny,σσ,xnx


, hσσx

nx2×1

=



h1,σσ,x1
...

h1,σσ,xnx
h2,σσ,x1

......
hnx,σσ,xnx


,

gσσσ
ny×1

=

 g1,σσσ
...

gny,σσσ

 , hσσσ
nx×1

=

 h1,σσσ
...

hnx,σσσ

 ,
with

gi,xjxkxl = ∂3gi(xt,σ)
∂xj,t∂xk,t∂xl,t

|xt=xss, σ=0, hi,xjxk,xl = ∂3hi(xt,σ)
∂xj,t∂xk,t∂xl,t

|xt=xss, σ=0,

gi,σσxj = ∂3gi(xt,σ)
∂2σ∂xl,t

|xt=xss, σ=0, hi,σσxj = ∂3hi(xt,σ)
∂2σ∂xj,t

|xt=xss, σ=0,

gi,σσσ = ∂3gi(xt,σ)
∂3σ

|xt=xss, σ=0, hi,σσσ = ∂3hi(xt,σ)
∂3σ

|xt=xss, σ=0.

These are the coefficient matrices in the third-order approximation. Andreasen (2011) shows
that gxxσ and hxxσ are zero when evaluated at the non-stochastic steady state. The coeffi-
cients gσσσ and hσσσ will be non-zero if the third moment of the shocks is non-zero.

Because the policy functions (equations 2 and 3) are unknown, I have to use the implicit
function theorem to find the unknown coefficients in the Taylor series expansion around the
non-stochastic steady state. To do this I substitute equations (2) and (3) into equation (1)
to get

Et (f (h(xt, σ) + σεt+1, g(h(xt) + σεt+1, σ), xt, g(xt, σ))) = 0. (6)

I then proceed to find the third-order approximation as follows:
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i) I begin by finding the first-order approximation of the policy functions g and h. This
can be done using Klein’s algorithm (see Klein, 2000) for example.5

ii) The first-order approximation can then be used to find the second-order approxima-
tion of the model. Taking the second derivative of f with respect to xi,t and xj,t
i, j = 1, · · · , nx, and then substituting in gx and hx (the solution to the first-order
approximation) results in a system that is linear in gxx and hxx. This is done more
efficiently using the second-order matrix chain rule of Magnus & Neudecker (1999) as is
done in Gomme & Klein (2011). The unknown coefficient matrices can then be found
as the solution to a system of linear equations.

iii) The first-order approximation and the second-order approximation can then be used
to find the third-order approximation. Taking derivatives of f with respect to xi,t,
xj,t and xk,t for i, j, k = 1, · · · , nx, and then substituting in the first and second-order
solutions results in a system that is linear in gxxx and hxxx. In this paper, I develop a
third-order matrix chain rule that gives a more efficient representation of this problem.
As before, the unknown coefficient matrices can be found as the solution to a system
of linear equations.

Similar steps can be followed to find the unknown coefficients gσσx, hσσx, gσσσ and hσσσ.

3. A third-order matrix chain rule

In this section I present a third-order matrix chain rule that is a natural extension of
Magnus and Neudecker’s second-order matrix chain rule (see Magnus & Neudecker, 1999).
This will prove a useful and efficient alternative to the tensor notation that is commonly
used. I begin by defining some function g that is an n-ary function of f, where f is an m-ary
function of x so that

y = g
(
f1 (x) , · · · , fn (x)

)
(7)

where the superscripts denote each f function and x is a vector of the variables xi, such that

x = [x1, · · · , xm] .

5Because the first derivative of f with respect to xt results in a quadratic function, a solution method like
Klein’s algorithm can be used to keep the solution with stable eigenvalues.
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By Fáa di Bruno’s formula, the third derivative of y with respect to the ith, jth and kth
elements in x is

∂3y

∂xi∂xj∂xk
=

n∑
a=1

n∑
b=1

n∑
c=1

∂3g

∂fa∂fb∂fc

(
∂fa

∂xi

)(
∂fb

∂xk

)(
∂fc

∂xj

)
+ (8)

n∑
a=1

n∑
b=1

∂2g

∂fa∂fb

(
∂2fa

∂xi∂xj

)(
∂fb

∂xk

)
+

n∑
a=1

n∑
b=1

∂2g

∂fa∂fb

(
∂2fa

∂xi∂xk

)(
∂fb

∂xj

)
+

n∑
a=1

n∑
b=1

∂g

∂fa∂fb

(
∂2fa

∂xj∂xk

)(
∂fb

∂xi

)
+

n∑
a=1

∂g

∂fa

(
∂3fa

∂xi∂xj∂xk

)
,

for any i, j, k = 1, . . . ,m and a, b, c = 1, . . . , n. This can be written more compactly as

yi,j,k =
n∑
a=1

n∑
b=1

n∑
c=1

ga,b,cf
a
i f
b
kf
c
j+

n∑
a=1

n∑
b=1

ga,bf
a
i,jf

b
k+

n∑
a=1

n∑
b=1

ga,bf
a
i,kf

b
j+

n∑
a=1

n∑
b=1

ga,bf
a
j,kf

b
i+

n∑
a=1

gaf
a
i,j,k,

(9)
I let S be the m2 ×m matrix of all possible combinations of the third-derivatives of y with
respect to each element xi in x. This has the form

S
m2×m

=


S̃1
...

S̃k
...

S̃m

 , where S̃k
m×m

=

 y1,1,k · · · ym,1,k
...

. . .

y1,m,k · · · ym,m,k

 . (10)

The element in the rth row and cth column of S is denoted by sr,c. Alternatively I can use
sj+m(k−1),i to refer to the element in the j +m(k − 1)th row and the ith column of S where
as before i, j, k = 1, . . . ,m. This alternative indexation allows the coordinates of an element
in S to be matched to the derivative in that position. For example; yi,j,k = sj+m(k−1),i. The
new indexation will be useful for constructing a proof of the chain rule.

Given the definition of S, I can now describe the third-order matrix chain rule consistent
with the derivatives in each element in S. Before I do this, I need to define some additional
matrices that will be used in the chain rule.

I begin with the gradient matrix for the function f, which I use D to denote, so that

D
n×m

=

 f
1
1 · · · f1m
...

...
fn1 · · · fnm

 . (11)
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It follows from this definition that fai = da,i for i = 1, . . . ,m and a = 1, . . . , n, where da,i
is the element in the ath row and the ith column of D. As part of the chain rule I need
to perform some transformations on some of the gradient matrices for the f function. This
ensures that the gradient with respect to the appropriate xi, xj and xk is used to reconstruct
each element of S.6 I let Q represent one such transformation

Q
n.m×m2

=


I

m×m
⊗D1

...
I

m×m
⊗Dn

 =



f11 f12 · · · f1m 0 0 · · · 0 · · · 0 0 · · · 0
0 0 · · · 0 f11 f12 · · · f1m · · · 0 0 · · · 0
...

...
0 0 · · · f11 f12 · · · f1m
f21 f22 · · · f2m 0 0 · · · 0 · · · 0 0 · · · 0
0 0 · · · 0 f21 f22 · · · f2m · · · 0 0 · · · 0
...

...
0 0 · · · f21 f22 · · · f2m
...

...
...

...
...

...
...

...
...

...
fn1 fn2 · · · fnm 0 0 · · · 0 · · · 0 0 · · · 0
0 0 · · · 0 fn1 fn2 · · · fnm · · · 0 0 · · · 0
...

...
0 0 · · · fn1 fn2 · · · fnm



,

(12)
where Di is the ith row of the matrix D. It then follows from this definition that

qk+m(b−1),j+m(k−1) = fbj

for j, k = 1, . . . ,m and b = 1, . . . , n, where qk+m(b−1),j+m(k−1) is the element in the
k +m(b− 1)th row and the j +m(k − 1)th column of Q.

The Hessian of f is represented by

V
n.m×m

=


Ṽ1
...

Ṽa
...

Ṽn

 , where Ṽa
m×m

=

 fa1,1 · · · fam,1
...

...
fa1,m · · · fam,m

 (13)

with fai,j = vj+m(a−1),i for a = 1, . . . , n and i, j = 1, . . . ,m, and vj+m(a−1),i is the element in
the j +m(a− 1)th row and the ith column of the matrix V .

The chain rule requires the appropriate second derivatives of f to be used at each step
when constructing the elements in S. As a consequence some rearrangements need to be

6This will be demonstrated in the proof of Theorem for this chain rule.
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performed on the Hessian of f. I let P denote one such rearrangement

P
n×m2

=
[
P̃1 · · · P̃j · · · P̃m

]
, where P̃j

n×m

=

 f
1
1,j · · · f1m,j
...

...
fn1,j · · · fnm,j

 (14)

so that fai,j = pa,i+m(j−1) for a = 1, . . . , n and i, j = 1, . . . ,m, where pa,i+m(j−1) is the element
in the ath row and the i+m(j − 1)th column of P.

The matrix T contains the third derivatives of f

T
n.m2×m

=


T̃1
...

T̃a
...

T̃n

 , where T̃a
m2×m

=


T̂a1
...

T̂ak
...

T̂am

 , and T̂ak
m×m

=

 fa1,1,k · · · fam,1,k
...

...
fa1,m,k · · · fam,m,k

 . (15)

It follows from the definition that fai,j,k = tj+m(k−1)+m2(a−1),i for a = 1, . . . , n and i, j, k =
1, . . . ,m, where tj+m(k−1)+m2(a−1),i is the element in j +m(k− 1) +m2(a− 1)th row and the
ith column of T .

I define the gradient vector for the g function

R
1×n

= [g1, · · · ,gn] (16)

so that ga = r1,a for a = 1, . . . , n, where r1,a is the ath entry in the row vector R. The
Hessian of the function g has the form

W
n×n

=

 g1,1 · · · gn,1
...

...
g1,n · · · gn,n

 , (17)

where ga,b = wa,b for a, b = 1, . . . , n, and wa,b is the element in the ath row and the bth
column of W. The matrix Z contains the third derivatives of the g function

Z
n2×n

=


Z̃1
...

Z̃c
...

Z̃n

 , where Z̃c
n×n

=

 g1,1,c · · · gn,1,c
...

...
g1,n,c · · · gn,n,c

 , (18)

which implies ga,b,c = zb+n(c−1),a for a, b, c = 1, . . . , n, where zb+n(c−1),a is the element in the
b+ n(c− 1)th row and the ath column of Z.

Given the definitions of S, D, Z, P, W, V , Q, R and T , I present a Theorem for the
third-order matrix chain rule:
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Theorem 1. The third-order matrix chain rule for y = g (f (x)), consistent with S, takes
the form

S = (D′ ⊗D′)ZD+ P′WD+

(
D′ ⊗ I

m×m

)(
W ⊗ I

m×m

)
V+

Q′
(
W ⊗ I

m×m

)
V +

(
R⊗ I

m2×m2

)
T . (19)

Proof See Appendix A. �

4. Third-order approximation

In this section I apply the third-order matrix chain rule (from Theorem 1) to find: gxxx,
hxxx, gσσx, hσσx, gσσσ and hσσσ, the matrices required in a third-order approximation of the
policy functions. I begin with the solution of gxxx and hxxx because gxxx is required for the
solutions of gσσx, hσσx, gσσσ and hσσσ.

4.1. Solving for gxxx and hxxx

Before outlining how the third-order matrix chain rule can be applied to find the third-
order approximation, I define some additional matrices used in the chain rule.

4.1.1. Matrix Definitions

As was mentioned in section 3, some transformations of the gradient functions (in this
case for the policy function) are required to ensure that the correct derivative is used when
constructing each element of the matrix chain rule. One such transformation is given by

h∗x
nx2×nx2

=


I

nx×nx
⊗ h1,x
...

I
nx×nx

⊗ hnx,x

 ,
where hi,x is the ith row of the hx matrix so that h∗x is a matrix that consists of the Kro-
necker product of the nx× nx identity matrix and each row of hx. This is the same as the
transformation used to construct Q in equation (12).
As is required for the matrix chain rule, some of the Hessian matrices need to be rearranged.
Applying these rearrangements to gxx and hxx gives

g∗xx
ny×nx2

=

 g1,x1x1 · · · g1,xnxxnx
...

...
gny,x1x1 · · · gny,xnxxnx

 , h∗xx
nx×nx2

=

 h1,x1x1 · · · h1,xnxxnx
...

...
hnx,x1x1 · · · hnx,xnxxnx

 .
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These follow from the definition of P in equation (14). I let Mx and Mxx represent the
gradient and Hessian matrices for the policy functions

Mx
2n×nx

=


hx
gxhx
I

nx×nx

gx

 , Mxx
2n.nx×nx

=


hxx(

I
ny×ny

⊗ h′x
)
gxxhx +

(
gx ⊗ I

nx×nx

)
hxx

0
nx2×nx

gxx

 .

I apply the required transformations to Mx to get

M∗
x

2n.nx×nx2
=


I

nx×nx
⊗M1,x

...
I

nx×nx
⊗M2n,x

 ,
where Mi,x is the ith row of the Mx matrix so that M∗

x is made up of the Kronecker product
of the nx× nx identity matrix and the rows of Mx. This is the same as the transformation
used to construct Q in equation (12). I also need to rearrange the Hessian of the policy
functions (Mxx), which gives

M∗
xx

2n×nx2
=


h∗xx

g∗xx (hx ⊗ hx) + gxh
∗
xx

0
nx×nx2

g∗xx

 .
This follows from the definition of P in equation (14). Finally, I define the gradient matrix,
Hessian matrix and the matrix of third derivatives for the f function. I let D denote the
gradient function

D
n×2n

=


∂f1

∂x1,t+1
· · · ∂f1

∂xnx,t+1

∂f1
∂y1,t+1

· · · ∂f1
∂yny,t+1

∂f1
∂x1,t

· · · · · · · · · ∂f1
∂yny,t

...
...

∂fn
∂x1,t+1

· · · ∂fn
∂xnx,t+1

∂fn
∂y1,t+1

· · · ∂fn
∂yny,t+1

∂fn
∂x1,t

· · · · · · · · · ∂fn
∂yny,t

 .
The Hessian takes the form

H
2n2×2n

=


H̃1

...

H̃a

...

H̃n

 , where H̃a
2n×2n

=


∂2fa

∂x1,t+1∂x1,t+1
· · · ∂2fa

∂yny,t∂x1,t+1
...

...

∂2fa
∂x1,t+1∂yny,t

· · · ∂2fa
∂yny,t∂yny,t

 .
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The matrix of third derivatives is given by

T
4n3×2n

=


T̃1
...

T̃a
...

T̃n

 , where T̃a
2n2×2n

=



∂3fa
∂x1,t+1∂x1,t+1∂x1,t+1

· · · ∂3fa
∂yny,t∂x1,t+1∂x1,t+1

...
...

∂3fa
∂x1,t+1∂yny,t∂x1,t+1

· · · ∂3fa
∂yny,t∂yny,t∂x1,t+1

∂3fa
∂x1,t+1∂x1,t+1∂x2,t+1

· · · ∂3fa
∂yny,t∂x1,t+1∂x2,t+1

...
......
...

∂3fa
∂x1,t+1∂yny,t∂yny,t

· · · ∂3fa
∂yny,t∂yny,t∂yny,t



.

4.1.2. Solution

After solving the first and second-order approximations of the model, I find the third
derivatives of equation (6) with respect to all possible combinations of the elements in xt.
I can then substitute the first and second-order derivatives of the policy functions, the
gradient matrix, the Hessian matrix and the matrix of third derivatives for the function f
(all evaluated at the non-stochastic steady state) into the resulting equations. The unknown
third derivatives of the policy function will be the solution to this system of equations. A
more efficient approach is to apply Theorem 1 (the third-order matrix chain rule) to equation
(6) to get(

I
n×n
⊗M ′

x ⊗M ′
x

)
TMx +

(
I
n×n
⊗ (M∗

xx)
′
)
HMx +

(
I
n×n
⊗M ′

x ⊗ I
nx×nx

)(
H ⊗ I

nx×nx

)
Mxx+(

I
n×n
⊗ (M∗

x)′
)(

H ⊗ I
nx×nx

)
Mxx+

(
D ⊗ I

nx2×nx2

)


hxxx
nx3×nx(

I
ny×ny

⊗ h′x ⊗ h′x
)

gxxx
ny.nx2×nx

hx +

(
gx ⊗ I

nx2×nx2

)
hxxx + K

ny.nx2×nx

0
nx3×nx

gxxx

 = 0,

(20)
where

K =

(
I

ny×ny
⊗ h′x ⊗ I

nx×nx

)(
gxx ⊗ I

nx×nx

)
hxx

+

(
I

ny×ny
⊗ (h∗x)

′
)(

gxx ⊗ I
nx×nx

)
hxx +

(
I

ny×ny
⊗ (h∗xx)

′
)
gxxhx.
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Applying the partition, D =

[
d1
n×nx

, d2
n×ny

, d3
n×nx

, d4
n×ny

]
, allows me to rearrange equation (20) to

get

A
n.nx2×nx

+

(
d1 ⊗ I

nx2×nx2

)
hxxx +

(
d2 ⊗ I

nx2×nx2

)(
I

ny×ny
⊗ h′x ⊗ h′x

)
gxxxhx

+

(
d2 ⊗ I

nx2×nx2

)(
gx ⊗ I

nx2×nx2

)
hxxx +

(
d4 ⊗ I

nx2×nx2

)
gxxx = 0, (21)

where

A =

(
I
n×n
⊗M ′

x ⊗M ′
x

)
TMx +

(
I
n×n
⊗ (M∗

xx)
′
)
HMx+(

I
n×n
⊗M ′

x ⊗ I
nx×nx

)(
H ⊗ I

nx×nx

)
Mxx+(

I
n×n
⊗ (M∗

x)′
)(

H ⊗ I
nx×nx

)
Mxx +

(
d2 ⊗ I

nx2×nx2

)
K.

Applying the vec operator to both sides of (21) allows the equation to be factorised as follows

vec(A) +

(
I

nx×nx
⊗ B

n.nx2×nx3

)
vec(hxxx)+(

C
n.nx3×ny.nx3

+ I
nx×nx

⊗ d4 ⊗ I
nx2×nx2

)
vec(gxxx) = 0,

(22)

where

B =

(
d1 ⊗ I

nx2×nx2

)
+

(
d2 ⊗ I

nx2×nx2

)(
gx ⊗ I

nx2×nx2

)
,

and

C = h′x ⊗
((

d2 ⊗ I
nx2×nx2

)(
I

ny×ny
⊗ h′x ⊗ h′x

))
.7

Equation (22) can then be written as the linear system[
C +

(
I

nx×nx
⊗ d4 ⊗ I

nx2×nx2

)
, I
nx×nx

⊗B
] [

vec(gxxx)
vec(hxxx)

]
= −vec(A). (23)

This is easily solved using standard matrix algebra. Alternatively equation (21) could have
been written in the form of a generalised Sylvester equation and solved using the LAPACK
routines of K̊agström & Poromaa (1996) as explained in Gomme & Klein (2011). This second
approach is computationally more efficient and uses less memory.

7Using vec(XY Z) = (Z ′ ⊗X)vec(Y ).
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4.2. Solving for gσσx and hσσx

Having found gxxx and hxxx I can now use them along with gx, hx, gxx, hxx, gσσ and hσσ,
to find gσσx and hσσx. However, before I begin I need to define some additional matrices to
be used in the solution.

4.2.1. Matrix definitions

I let Nσ be the gradient matrix for the policy functions with respect to σ, and N∗σx be
the Hessian matrix for the policy functions with respect to σ and all the elements in xt

Nσ
2n×nx

=

 I
nx×nx

gx
0

n×nx

 , and N∗σx
2n×nx2

=


0

nx×nx2

g∗xx

(
hx ⊗ I

nx×nx

)
0

n×nx2

 ,
where N∗σx follows from the definition of P in equation (14). The prediction error variance-
covariance matrix for the predetermined variables takes the form

Σ
nx×nx

=

 σ2
1 · · · σ1,nx
...

...
σnx,1 · · · σ2

nx

 ,
where σ2

i is the variance of the prediction error for the ith predetermined variable. Like-
wise, σi,j is the covariance between the prediction errors for the ith and jth predetermined
variables. I also introduce the the matrix trace (trm). This is defined in Gomme & Klein
(2011)) so that for an n.m× n matrix[

Y ′1 Y ′2 · · · Y ′m
]′
,

the matrix trace gives an m× 1 vector[
tr(Y1) tr(Y2) · · · tr(Ym)

]′
.

The matrix trace is useful for taking the expectations of a random matrix.

4.2.2. Solution

I differentiate equation (6) with respect to σ twice and with respect to all elements in
xt once. I then substitute the first and second-order approximate solutions, along with the
gradient, Hessian and third derivatives of f , and the matrix gxxx into the resulting equations.
The unknown coefficients gσσx and hσσx will be the solutions to this system of equations.
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This is done more efficiently by applying Theorem 1 to equation (6) to get

trm

((
I
n×n
⊗M ′

x ⊗N ′σ
)
TNσΣ

)
+ 2× trm

((
I
n×n
⊗ (N∗σx)

′
)
HNσΣ

)

+

(
I
n×n
⊗M ′

x

)
H


hσσ

trm

((
I

ny×ny
⊗ Σ

)
gxx

)
+ gxhσσ + gσσ

0
nx×1

gσσ

+

(
D ⊗ I

nx×nx

)


hσσx
nx2×1

P
ny.nx×1

0
nx2×1

gσσx
ny.nx×1

 = 0,

(24)
where

P =

(
I

ny×ny
⊗ h′x

)
gxxhσσ +

(
gx ⊗ I

nx×nx

)
hσσx +

(
I

ny×ny
⊗ h′x

)
gσσx+

trm

((
I

ny.nx×ny.nx
⊗ Σ

nx×nx

)(
I

ny×ny
⊗ h′x ⊗ I

nx×nx

)
gxxx

)
.

Substituting D = [d1, d2, d3, d4] into equation (24) and rearranging gives

G
n×1

+

(
d1 ⊗ I

nx×nx

)
hσσx +

(
d2 ⊗ I

nx×nx

)(
gx ⊗ I

nx×nx

)
hσσx

+

(
d2 ⊗ I

nx×nx

)(
I

ny×ny
⊗ h′x

)
gσσx +

(
d4 ⊗ I

nx×nx

)
gσσx = 0, (25)

where

G = trm

((
I
n×n
⊗M ′

x ⊗N ′σ
)
TNσΣ

)
+ 2× trm

((
I
n×n
⊗N ′σx

)
HNσΣ

)

+

(
I
n×n
⊗M ′

x

)
H


hσσ

trm

((
I

ny×ny
⊗ Σ

)
gxx

)
+ gxhσσ + gσσ

0
nx×1

gσσ



+

(
d2 ⊗ I

nx×nx

)
(

I
ny×ny

⊗ h′x
)
gxxhσσ + · · ·

· · ·+ trm

((
I

ny.nx×ny.nx
⊗ Σ

nx×nx

)(
I

ny×ny
⊗ h′x ⊗ I

nx×nx

)
gxxx

)
 .

Equation (25) can be written as the linear system

Q
n.nx×n.nx

[
gσσx
hσσx

]
= −G, (26)
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where

Q =

[(
d2 ⊗ I

nx×nx

)(
I

ny×ny
⊗ h′x

)
+

(
d4 ⊗ I

nx×nx

)
,(

d1 ⊗ I
nx×nx

)
+

(
d2 ⊗ I

nx×nx

)(
gx ⊗ I

nx×nx

)]
,

which is easily solved using standard matrix algebra.

4.3. Solving for gσσσ and hσσσ

If the shocks in the model are assumed to be skewed, or even co-skewed, this will have
further implications for agents behaviour. As a consequence an additional intercept correc-
tion needs to be made to the solution in the form of the vectors gσσσ and hσσσ. In this section
I solve for gσσσ and hσσσ. But before I do this, I define some additional matrices used in the
solution.

4.3.1. Matrix definitions

I let N∗σσ be a rearrangement of the Hessian of the policy functions with respect to σ so
that

N∗σσ =


0

nx×nx2

g∗xx
0

n×nx2

 .
This follows from the definition of P in equation (14). I also define the skewness (co-skewness)
matrix

S
nx×nx2

=

 s1 s1,1,2 · · · s1,nx,nx
...

...
snx,1,1 · · · · · · snx

 .
The skewness matrix contains the third moments of the prediction errors, where si = Et

[
u3i,t
]
,

si,j,k = Et [ui,tuj,tuk,t], and ui,t is the prediction error for the ith predetermined variable.
This follows from the definition of the variance-covariance matrix: Σ = Et [ut ⊗ u′t], so
that S = Et [ut ⊗ u′t ⊗ u′t], where ut is a vector of prediction errors. If all the shocks are
symmetrically distributed, this matrix will have zeros for all of its entries.

4.3.2. Solution

I differentiate equation (6) with respect to σ three times. Then, as was done in previous
sections, I substitute in the first and second derivatives of the policy functions, and the
first, second and third derivatives of the function f . The unknown coefficient matrices gσσσ
and hσσσ can then be found as the solution to this system of equations. As was suggested
earlier, using the third-order matrix chain rule from Theorem 1 greatly improves efficiency,
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and applied to this problem results in the following system of equations

trm

((
I
n×n
⊗N ′σ ⊗N ′σ

)
TNσS

)
+ 3× trm

((
I
n×n
⊗ (N∗σσ)′

)
HNσS

)

+D



hσσσ
nx×1

trm

((
I

ny×ny
⊗ S

)
gxxx

)
+ gxhσσσ + gσσσ

0
nx×1

gσσσ
ny×1


= 0. (27)

Substituting D = [d1, d2, d3, d4] into equation (27) and rearranging gives the linear system

[d2 + d4, d1 + d2gx]

[
gσσσ
hσσσ

]
= −J

n×1

, (28)

where

J = trm

((
I
n×n
⊗N ′σ ⊗N ′σ

)
TNσS

)
+ 3× trm

((
I
n×n
⊗ (N∗σσ)′

)
HNS

)
+ d2 × trm

((
I

ny×ny
⊗ S

)
gxxx

)
.

Equation (28) can then be solved using standard matrix algebra.

5. A simple example

In this section I demonstrate my solution procedure using a simple 3 equation RBC
model. The model can be written in the following form:

0 = c−γt − βEt
{(

1 + αat+1k
α−1
t − δ

)
c−γt+1

}
,

0 = kt + ct − atkαt−1 − (1− δ) kt−1,
0 = at − aρt−1 exp(σεt),

where ct is consumption, kt is the capital stock, at is technology and εt is a technology shock.
Dropping the time subscripts from the model allows the non-stochastic steady states to be

calculated, a = 1, k =
[

αβa
1−β(1−δ)

] 1
1−α

, c = akα − δk, ε = 0. I calibrate the model such that:

α = 0.3, β = 0.99, δ = 0.025, γ = 1.1, ρ = 0.8, σ = 0.01.
I find the solution of the model in terms of log deviations from the non-stochastic steady

state, which requires making the following substitutions: ât = log(at), k̂t = log(kt), ĉt =
log(ct), ε̂t = 0, â∗t = log(at).

8 In addition, I include an auxiliary variable for technology

8Finding the solution in terms of level deviations from the non-stochastic steady state is also acceptable, but
I stick with convention and find the solution in log terms.
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because it appears in the model in periods t − 1, t and t + 1. I also include an additional
equation for the t+ 1 technology shock (under this representation the shock is treated as a
state variable). The model is now a 5 equation system:

0 = exp(ĉt)
−γ − β

(
1 + α exp(â∗t+1) exp(k̂t)

α−1 − δ
)

exp(ĉt+1)
−γ,

0 = exp(k̂t) + exp(ĉt)− exp(ât) exp(k̂t−1)
α − (1− δ) exp(k̂t−1),

0 = ât − ρât−1 − σε̂t,
0 = â∗t − ât,
0 = ε̂t+1,

with the non-stochastic steady states: â = log(a), k̂ = log(k), ĉ = log(c), ε̂ = 0, â∗ = log(a).
I then define the vector of predetermined variables

xt =
[
k̂t−1 ât−1 ε̂t

]′
,

and the vector of non-predetermined variables

yt =
[
ĉt â∗t

]′
.

The variance-covariance matrix for the prediction errors for the predetermined variables only
has a single non-zero element for the technology shock

Σ =

 0 0 0
0 0 0
0 0 σ2

 .
Likewise the skewness matrix only has a single non-zero element for the technology shock

S =

 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 σ3

 .
I set the skewness of the technology shock to be the cube of the standard deviation of the
technology shock, so that it has a standardised skewness statistic equal to one.

The derivatives are solved in Matlab using automatic derivatives (see for example Bischof
et al. 2008). Automatic derivatives are relatively quick to calculate and extremely accurate.9

I solve for the first-order terms using the method from Klein (2000), the second-order
terms using the method from Gomme & Klein (2011), and the third-order terms using the

9Using a desktop pc with a 2993 Mhz Intel processor and 4GB RAM it takes 0.2431 seconds to read-in
the model (equations, parameters etc), solve the non-stochastic steady state, and calculate first, second
and third derivatives of the RBC model described in this section. Using the same computer it takes
0.3157 seconds to read-in the model, solve the non-stochastic steady state, and find first, second and third
derivatives of an 8 equation (10 in total) NK DSGE model.
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method outlined in this paper. The results are presented in Appendix B to allow readers to
verify their accuracy.

The same model was coded in Dynare and using Matlab code from Andreasen (2011). The
third-order approximations using the method outlined in this paper were checked against the
third-order approximations from Dynare and Andreasen’s code and found to be the same.10

I tested my code for speed against Andreasen’s code. The code from Andreasen (2011)
uses tensor notation which allows me to compare the speed difference between the different
solution methods. The tests were performed using a desktop pc with a 2993 Mhz Intel
processor and 4GB RAM. I repeated the exercise with an 8 equation (10 equations when
counting auxiliary variables) New Keynesian DSGE model. The times (in seconds) from
both experiments are recorded in the table below:

Table 1: Computation Times

Model Tensors
Without
Tensors

Without
Tensors (Opt)

RBC 0.1211 0.0040 0.0037

NK DSGE 1.1288 0.0447 0.0137

My solution method took 0.0040 seconds to find the third-order terms: gxxx, hxxx, gσσx, hσσx,
gσσσ and hσσσ, for the simple RBC model. Andreasen’s code took 0.1211 seconds to find the
same terms. For the New Keynesian DSGE model my solution method took 0.0447 seconds
to solve, while Andreasens’s code took 1.1288 seconds to solve. The procedure outlined in
this paper appears to be orders of magnitude faster when using Matlab. The third column
provides speeds for solving both the models using an optimised version of my code. More
specifically I vectorise the Kronecker products as explained in Acklam (2003) and I remove
the auxiliary equations (which are linear) from the system to solve for the second and third
order solutions.11 This results in further performance improvements, especially for the New
Keynesian DSGE model which solves more than 80 times faster than when tensor notation
is used. Andreasen’s code has been optimised to exploit the symmetry of the derivatives.
This decreases the number of derivatives that need to be calculated and shrinks the size
of the matrices, which results in some speed gains. The procedure I outline in this paper
does not exploit the symmetry of the derivatives, as I find the extra time required to shrink
the matrices is more than the time saved in the matrix division.12 The speed gains from
my approach come from having a vectorised solution. Andreasen’s code has 142 For loops
and uses 621 lines of code. Because my solution uses matrix algebra, my Matlab code is
vectorised with just 4 For loops and 67 lines of code. Vectorising the Kronecker products
further improves the codes performance.

10I have also checked my solution method against Dynare and Andreasen’s code using other small DSGE
models.

11This requires making the distinction between predetermined variables, non-predetermined variables and
variables that are both (e.g. the variable appears in the model equations in periods t− 1, t and t + 1).

12Exploiting the symmetry in the derivatives would improve memory usage allowing for larger models, but
this would come at the expense of speed as For loops are slow to implement in Matlab.
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6. Conclusion

In this paper I have demonstrated a new method for solving third-order approximations
for DSGE models. The method does not involve tensor notation making it easier to under-
stand and code, and faster to implement using Matlab. While much code exists in Matlab
for solving third-order approximations, my procedure and code, due to it’s simplicity, can
form a blueprint for those wanting to write code in other programming languages, or it can
be used by those wanting more flexibility and speed over existing Matlab routines. The
Matlab code I provide results in speed gains of up to 80 times over existing Matlab codes
using tensor notation.

Appendix A. Third order matrix chain rule

This appendix outlines the proof for the third-order matrix chain rule in Theorem 1.

Proof The proof proceeds as follows; from Theorem 1, the third-order matrix chain rule

S = (D′ ⊗D′)ZD+ P′WD+

(
D′ ⊗ I

m×m

)(
W ⊗ I

m×m

)
V+

Q′
(
W ⊗ I

m×m

)
V +

(
R⊗ I

m2×m2

)
T . (A.1)

This can be written as the sum of 5 matrices

S1 = (D′ ⊗D′)ZD, (A.2)

S2 = P′WD, (A.3)

S3 =

(
D′ ⊗ I

m×m

)(
W ⊗ I

m×m

)
V , (A.4)

S4 = Q′
(
W ⊗ I

m×m

)
V , (A.5)

S5 =

(
R⊗ I

m2×m2

)
T , (A.6)

so that equation (A.1) can be rewritten as

S = S1 + S2 + S3 + S4 + S5.

To prove the Theorem I need to show that for each element in S, the following holds

yi,j,k = sj+m(k−1),i = s1j+m(k−1),i + s2j+m(k−1),i + s3j+m(k−1),i + s4j+m(k−1),i + s5j+m(k−1),i.
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That is the corresponding entries in S1, S2, S3, S4 and S5 must add to the entry in the same
position in the matrix S. This is equivalent to showing that

s1j+m(k−1),i =
n∑
a=1

n∑
b=1

n∑
c=1

ga,b,cf
a
i f
b
kf
c
j,

s2j+m(k−1),i =
n∑
a=1

n∑
b=1

ga,bf
a
i f
b
j,k,

s3j+m(k−1),i =
n∑
a=1

n∑
b=1

ga,bf
a
i,jf

b
k,

s4j+m(k−1),i =
n∑
a=1

n∑
b=1

ga,bf
a
i,kf

b
j,

s5j+m(k−1),i =
n∑
a=1

gaf
a
i,j,k,

so that Fáa di Bruno’s formula holds for each element in S. I proceed to do this in five steps,
showing that for each of the five matrices making up the chain rule, the indexation matches
up with the appropriate derivatives.

Step 1

From equation (A.3), S1 = (D′ ⊗D′)ZD. I need to show that s1j+m(k−1),i =
n∑
a=1

n∑
b=1

n∑
c=1

ga,b,cf
a
i f
b
kf
c
j

I define Ω1 so that

Ω1

m2×n2
= D′ ⊗D′ =



f11f
1
1 f21f

1
1 · · · · · · fn1f

n
1

f11f
1
2 f21f

1
2 · · · · · · fn1f

n
2

...
...

...
f11f

1
m f21f

1
m · · · · · · fn1f

n
m

f12f
1
1 f22f

1
1 · · · · · · fn2f

n
1

...
...

...
...

...
... · · · fbkf

c
j · · ·

...
...

...
...

...
f1mf

1
m f2mf

1
m · · · · · · fnmf

n
m


,

where
ω1
j+m(k−1),b+n(c−1) = fbkf

c
j,

is the element in the j+m(k−1)th row and the b+n(c−1)th column ofΩ1 for j, k = 1, . . . ,m
and b, c = 1, . . . , n. I can then define Ω2 to be
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Ω2

m2×n
= Ω1 Z

n2×n
=



n∑
b=1

n∑
c=1

g1,b,cf
b
1f
c
1

n∑
b=1

n∑
c=1

g2,b,cf
b
1f
c
1 · · · · · ·

n∑
b=1

n∑
c=1

gn,b,cf
b
1f
c
1

n∑
b=1

n∑
c=1

g1,b,cf
b
1f
c
2

n∑
b=1

n∑
c=1

g2,b,cf
b
1f
c
2 · · · · · ·

n∑
b=1

n∑
c=1

gn,b,cf
b
1f
c
2

...
... · · ·

...
n∑
b=1

n∑
c=1

g1,b,cf
b
1f
c
m

n∑
b=1

n∑
c=1

g2,b,cf
b
1f
c
m · · · · · ·

n∑
b=1

n∑
c=1

gn,b,cf
b
1f
c
m

n∑
b=1

n∑
c=1

g1,b,cf
b
2f
c
1

n∑
b=1

n∑
c=1

g2,b,cf
b
2f
c
1 · · · · · ·

n∑
b=1

n∑
c=1

gn,b,cf
b
2f
c
1

...
... · · ·

...

...
...

n∑
b=1

n∑
c=1

ga,b,cf
b
kf
c
j

...

...
... · · ·

...
n∑
b=1

n∑
c=1

g1,b,cf
b
mf

c
m

n∑
b=1

n∑
c=1

g2,b,cf
b
mf

c
m · · · · · ·

n∑
b=1

n∑
c=1

gn,b,cf
b
mf

c
m



,

where

ω2
j+m(k−1),a =

n∑
b=1

n∑
c=1

ga,b,cf
b
kf
c
j,

is the element in the j + m(k − 1)th row and the ath column of Ω2 for j, k = 1, . . . ,m and
a = 1, . . . , n. The matrix D as defined in (11)

D
n×m

=


f11 · · · f1i · · · f1m
...

...
...

fa1 · · · fai · · · fam
...

...
...

fn1 · · · fni · · · fnm

 .

Here I use i to index the derivative and a to index the function so that I can write

fai = da,i.
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Multiplying Ω2 by D gives S1

S1 =

n∑
a=1

n∑
b=1

n∑
c=1

ga,b,cf
b
1f

c
1f

a
1

n∑
a=1

n∑
b=1

n∑
c=1

ga,b,cf
b
1f

c
1f

a
2 · · ·

n∑
a=1

n∑
b=1

n∑
c=1

ga,b,cf
b
1f

c
1f

a
m

n∑
a=1

n∑
b=1

n∑
c=1

ga,b,cf
b
1f

c
2f

a
1

n∑
a=1

n∑
b=1

n∑
c=1

ga,b,cf
b
1f

c
2f

a
2 · · ·

n∑
a=1

n∑
b=1

n∑
c=1

ga,b,cf
b
1f

c
2f

a
m

...
...

...
...

...
n∑

a=1

n∑
b=1

n∑
c=1

ga,b,cf
b
kf

c
jf

a
i

...

...
...

...
n∑

a=1

n∑
b=1

n∑
c=1

ga,b,cf
b
mf

c
mf

a
1

n∑
a=1

n∑
b=1

n∑
c=1

ga,b,cf
b
mf

c
mf

a
2 · · ·

n∑
a=1

n∑
b=1

n∑
c=1

ga,b,cf
b
mf

c
mf

a
m


.

(A.7)

From the indexation in equation (A.7) it can be verified that13

s1j+m(k−1),i =
n∑
a=1

n∑
b=1

n∑
c=1

ga,b,cf
a
i f
b
kf
c
j,

as required.

Step 2

From equation (A.4), S2 = P′WD. I need to show that s2j+m(k−1),i =
n∑
a=1

n∑
b=1

ga,bf
a
i f
b
j,k. I define

13The ordering of the derivatives of the f functions does not matter because these are scalars.
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Ω3 = P′W, so that

Ω3

m2×n
= P′

m2×n
W
n×n

=



n∑
b=1

g1,bf
b
1,1

n∑
b=1

g2,bf
b
1,1 · · ·

n∑
b=1

gn,bf
b
1,1

...
...

n∑
b=1

g1,bf
b
m,1

n∑
b=1

g2,bf
b
m,1 · · ·

n∑
b=1

gn,bf
b
m,1

n∑
b=1

g1,bf
b
1,2

n∑
b=1

g2,bf
b
1,2 · · ·

n∑
b=1

gn,bf
b
1,2

...
...

...
n∑
b=1

ga,bf
b
j,k

...

...
...

n∑
b=1

g1,bf
b
m,m

n∑
b=1

g2,bf
b
m,m · · ·

n∑
b=1

gn,bf
b
m,m



,

where

ω3
j+m(k−1),a =

n∑
b=1

ga,bf
b
j,k,

is the element in the j +m(k − 1)th row and the ath column of Ω3, for j, k = 1, . . . ,m and
a = 1, . . . , n.

S2 = Ω3D

S2 =



n∑
a=1

n∑
b=1

ga,bf
b
1,1f

a
1

n∑
a=1

n∑
b=1

ga,bf
b
1,1f

a
2 · · ·

n∑
a=1

n∑
b=1

ga,bf
b
1,1f

a
m

n∑
a=1

n∑
b=1

ga,bf
b
2,1f

a
1

n∑
a=1

n∑
b=1

ga,bf
b
2,1f

a
2 · · ·

n∑
a=1

n∑
b=1

ga,bf
b
2,1f

a
m

n∑
a=1

n∑
b=1

ga,bf
b
m,1f

a
1

n∑
a=1

n∑
b=1

ga,bf
b
m,1f

a
2 · · ·

n∑
a=1

n∑
b=1

ga,bf
b
m,1f

a
m

n∑
a=1

n∑
b=1

ga,bf
b
j,kf

a
i

n∑
a=1

n∑
b=1

ga,bf
b
m,mf

a
1

n∑
a=1

n∑
b=1

ga,bf
b
m,mf

a
2 · · ·

n∑
a=1

n∑
b=1

ga,bf
b
m,mf

a
m



,

so that

s2j+m(k−1),i =
n∑
a=1

n∑
b=1

ga,bf
a
i f
b
j,k,

23



as required.

Step 3

From equation (A.5), S3 =

(
D′ ⊗ I

m×m

)(
W ⊗ I

m×m

)
V . I need to show that s3j+m(k−1),i =

n∑
a=1

n∑
b=1

ga,bf
a
i,jf

b
k. I define Ω4 so that

Ω4

m2×n.m
=

(
D′ ⊗ I

m×m

)(
W ⊗ I

m×m

)
=



n∑
b=1

g1,bf
b
1 0 0 · · · 0 · · ·

n∑
b=1

gn,bf
b
1 0 0 · · · 0

0
n∑

b=1

g1,bf
b
1 0 · · · 0 · · · 0

n∑
b=1

gn,bf
b
1 0 · · · 0

...
...

... · · ·
...

...
...

0 0 · · · · · ·
n∑

b=1

g1,bf
b
1 · · · 0 0 · · · · · ·

n∑
b=1

gn,bf
b
1

...
...

... · · ·
...

...
...

...
...

... · · ·
...

...
...

n∑
b=1

g1,bf
b
m 0 0 · · · 0 · · ·

n∑
b=1

gn,bf
b
m 0 0 · · · 0

0
n∑

b=1

g1,bf
b
m 0 · · · 0 · · · 0

n∑
b=1

gn,bf
b
m 0 · · · 0

...
...

... · · ·
...

...
...

0 0 · · · · · ·
n∑

b=1

g1,bf
b
m · · · 0 0 · · · · · ·

n∑
b=1

gn,bf
b
m



,

where

ω4
j+m(k−1),j+m(a−1) =

n∑
b=1

ga,bf
b
k,

is the element in the j+m(k−1)th row and the j+m(a−1)th column ofΩ4, for j, k = 1, . . . ,m
and a = 1, . . . , n. Using the definition of S3 I can write

S3 = Ω4V ,

24



S3 =



n∑
a=1

n∑
b=1

ga,bf
b
1f
a
1,1

n∑
a=1

n∑
b=1

ga,bf
b
1f
a
2,1 · · ·

n∑
a=1

n∑
b=1

ga,bf
b
1f
a
m,1

n∑
a=1

n∑
b=1

ga,bf
b
1f
a
1,2

n∑
a=1

n∑
b=1

ga,bf
b
1f
a
2,2 · · ·

n∑
a=1

n∑
b=1

ga,bf
b
1f
a
m,2

...
...

...
n∑
a=1

n∑
b=1

ga,bf
b
kf
a
i,j

...

...
...

n∑
a=1

n∑
b=1

ga,bf
b
mf

a
1,m

n∑
a=1

n∑
b=1

ga,bf
b
mf

a
2,m · · ·

n∑
a=1

n∑
b=1

ga,bf
b
mf

a
m,m



,

where

s3j+m(k−1),i =
n∑
a=1

n∑
b=1

ga,bf
a
i,jf

b
k,

as required.

Step 4

From equation (A.6), S4 = Q′
(
W ⊗ I

m×m

)
V . I need to show s4j+m(k−1),i =

n∑
a=1

n∑
b=1

ga,bf
a
i,kf

b
j.

From the definition of Q

Q′ =



f11 0 · · · 0 f21 0 · · · fn1 0 · · · 0
f12 0 · · · 0 f22 0 · · · fn2 0 · · · 0
...

...
...

...
... 0

f1m 0 · · · 0 f2m 0 · · · fnm 0 · · · 0
0 f11 · · · 0 0 f21 · · · 0 fn1 · · · 0
0 f12 · · · 0 0 f22 · · · 0 fn2 · · · 0
...

...
...

...
... 0

0 f1m · · · 0 0 f2m · · · 0 fnm · · · 0
...

...
...

...
...

...
0 0 · · · f1m 0 0 · · · f2m 0 · · · fnm


,

where
qj+m(k−1),k+m(b−1) = fbj,

is the element in the j+m(k−1)th row and the k+m(b−1)th column ofQ′, for j, k = 1, . . . ,m
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and b = 1, . . . , n. The Kronecker product of W and the m×m identity matrix is given by

W ⊗ I
m×m

=



g1,1 0 · · · 0 · · · gn,1 0 · · · 0
0 g1,1 · · · 0 · · · 0 gn,1 · · · 0
...

...
0 0 · · · g1,1 · · · 0 0 · · · gn,1
...

...
g1,n 0 · · · 0 · · · gn,n 0 · · · 0

0 g1,n · · · 0 · · · 0 gn,n · · · 0
...

...
0 0 · · · g1,n · · · 0 0 · · · gn,n


,

where
wk+m(b−1),k+m(a−1) = ga,b,

is the element in the k + m(b − 1)th row and the k + m(a − 1)th column of W ⊗ I
m×m

, for

k = 1, . . . ,m and a, b = 1, . . . , n. I define Ω5 so that

Ω5

m2×n.m
= Q′

(
W ⊗ I

m×m

)
=

n∑
b=1

g1,bf
b
1 0 · · · 0 · · ·

n∑
b=1

gn,bf
b
1 0 · · · 0

n∑
b=1

g1,bf
b
2 0 · · · 0 · · ·

n∑
b=1

gn,bf
b
2 0 · · · 0

...
...

n∑
b=1

g1,bf
b
m 0 · · · 0 · · ·

n∑
b=1

gn,bf
b
m 0 · · · 0

0
n∑

b=1

g1,bf
b
1 · · · 0 · · · 0

n∑
b=1

gn,bf
b
1 · · · 0

0

n∑
b=1

g1,bf
b
2 · · · 0 · · · 0

n∑
b=1

gn,bf
b
2 · · · 0

...
...

0
n∑

b=1

g1,bf
b
m · · · 0 · · · 0

n∑
b=1

gn,bf
b
m · · · 0

...
...

0 0 · · ·
n∑

b=1

g1,bf
b
1 · · · 0 0 · · ·

n∑
b=1

gn,bf
b
1

0 0 · · ·
n∑

b=1

g1,bf
b
2 · · · 0 0 · · ·

n∑
b=1

gn,bf
b
2

...
...

0 0 · · ·
n∑

b=1

g1,bf
b
m · · · 0 0 · · ·

n∑
b=1

gn,bf
b
m



,
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where

ω5
j+m(k−1),k+m(a−1) =

n∑
b=1

ga,bf
b
j,

is the element in the j+m(k−1)th row and the k+m(a−1)th column ofΩ5, for j, k = 1, . . . ,m
and a = 1, . . . , n. Using the definition of S4, I can write

S4 = Ω5V ,

S4 =



n∑
a=1

n∑
b=1

ga,bf
b
1f
a
1,1

n∑
a=1

n∑
b=1

ga,bf
b
1f
a
2,1 · · ·

n∑
a=1

n∑
b=1

ga,bf
b
1f
a
m,1

n∑
a=1

n∑
b=1

ga,bf
b
2f
a
1,1

n∑
a=1

n∑
b=1

ga,bf
b
2f
a
2,1 · · ·

n∑
a=1

n∑
b=1

ga,bf
b
2f
a
m,1

n∑
a=1

n∑
b=1

ga,bf
b
jf
a
i,k

n∑
a=1

n∑
b=1

ga,bf
b
mf

a
1,m

n∑
a=1

n∑
b=1

ga,bf
b
mf

a
2,m · · ·

n∑
a=1

n∑
b=1

ga,bf
b
mf

a
m,m



,

where

s4j+m(k−1),i =
n∑
a=1

n∑
b=1

ga,bf
a
i,kf

b
j,

as required.

Step 5

From equation (A.6), S5 =

(
R⊗ I

m2×m2

)
T . I need to show that s5j+m(k−1),i =

∑n
a=1 gaf

a
i,j,k. I

begin by defining Ω6 such that

Ω6
m2×n.m2

= R⊗ I
m2×m2

=


g1 0 · · · 0 g2 0 · · · gn 0 · · · 0
0 g1 · · · 0 0 g2 · · · 0 gn · · · 0
...
0 0 · · · g1 0 0 · · · 0 0 · · · gn

 ,
where

ω6
j+m(k−1),j+m(k−1)+m2(a−1) = ga,

is the element in the j +m(k− 1)th row and the j +m(k− 1) +m2(a− 1)th column in Ω6,
for j, k = 1, . . . ,m and a = 1, . . . , n. Using the definition of S5, I can write

S5 = Ω6T ,
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S5 =



n∑
a=1

gaf
a
1,1,1

n∑
a=1

gaf
a
2,1,1 · · ·

n∑
a=1

gaf
a
m,1,1

n∑
a=1

gaf
a
1,2,1

n∑
a=1

gaf
a
2,2,1 · · ·

n∑
a=1

gaf
a
m,2,1

...
...

...
n∑
a=1

gaf
a
1,m,1

n∑
a=1

gaf
a
2,m,1 · · ·

n∑
a=1

gaf
a
m,m,1

n∑
a=1

gaf
a
1,1,2

n∑
a=1

gaf
a
2,1,2 · · ·

n∑
a=1

gaf
a
m,1,2

...
...

...

...
...

n∑
a=1

gaf
a
i,j,k

...

...
...

...
n∑
a=1

gaf
a
1,m,m

n∑
a=1

gaf
a
2,m,m · · ·

n∑
a=1

gaf
a
m,m,m



,

where

s5j+m(k−1),i =
n∑
a=1

gaf
a
i,j,k,

as required. This completes the proof. �

Appendix B. Model solution

The solved matrices from section 5 are presented below.

gx =

[
0.538516074338190 0.128222800563108 0.160278500703885

0 0.800000000000000 1.000000000000000

]
,

hx =

 0.960555718076461 0.081805764224287 0.102257205280358
0 0.800000000000000 1.000000000000000
0 0 0

 ,

gxx =


0.050410880298460 −0.056379980258910 −0.070474975323637
−0.056379980258910 0.048554933367482 0.060693666709352
−0.070474975323637 0.060693666709352 0.075867083386690

0 0 0
0 0 0
0 0 0

 ,
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hxx =



0.031544108616856 −0.051663874599147 −0.064579843248933
−0.051663874599147 0.062210119144458 0.077762648930573
−0.064579843248933 0.077762648930573 0.097203311163216

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0


,

gσσ =

[
0.526512345088850× 10−4

0

]
,

hσσ =

 −0.484409085170130× 10−5

0
0

 ,

gxxx =



0.000886224176982 0.018042424368051 0.022553030460064
0.018042424368051 −0.016047638262395 −0.020059547827995
0.022553030460064 −0.020059547827994 −0.025074434784993
0.018042424368051 −0.016047638262395 −0.020059547827995
−0.016047638262396 0.019412734848266 0.024265918560332
−0.020059547827995 0.024265918560332 0.030332398200415
0.022553030460064 −0.020059547827995 −0.025074434784993
−0.020059547827995 0.024265918560332 0.030332398200415
−0.025074434784993 0.030332398200415 0.037915497750519

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0



,
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hxxx =



−0.020956383687171 0.029527273689885 0.036909092112356
0.029527273689885 −0.035680637163452 −0.044600796454315
0.036909092112356 −0.044600796454315 −0.055750995567894
0.029527273689885 −0.035680637163452 −0.044600796454315
−0.035680637163452 0.040392437073006 0.050490546341257
−0.044600796454315 0.050490546341257 0.063113182926571
0.036909092112356 −0.044600796454315 −0.055750995567894
−0.044600796454315 0.050490546341257 0.063113182926571
−0.055750995567894 0.063113182926571 0.078891478658214

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0



,

gσσx =


0.199558292329446× 10−4

0.059796933577375× 10−4

0.074746166971719× 10−4

0
0
0

 ,

hσσx =



0.208394896512764× 10−6

−0.775000263651503× 10−6

−0.968750329564378× 10−6

0
0
0
0
0
0


,
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gσσσ =

[
−0.138593020922434× 10−6

0

]
,

hσσσ =

 0.127510245680320× 10−7

0
0

 .
References

Acklam, P. J. (2003). Matlab array manipulation tips and tricks. Draft Book. URL http:

//home.online.no/~pjacklam/matlab/doc/mtt/doc/mtt.pdf.

Andreasen, M. M. (2011). On the effects of rare disasters and uncertainty shocks for risk
premia in non-linear DSGE models. Review of Economic Dynamics. URL http://dx.

doi.org/10.1016/j.red.2011.08.001.
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