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Abstract

This paper compares alternative models of time-varying macroeconomic volatility on
the basis of the accuracy of point and density forecasts of macroeconomic variables. In
this analysis, we consider both Bayesian autoregressive and Bayesian vector autoregres-
sive models that incorporate some form of time-varying volatility, precisely stochastic
volatility (both with constant and time-varying autoregressive coefficients), stochastic
volatility following a stationary AR process, stochastic volatility coupled with fat tails,
GARCH and mixture of innovation models. The comparison is based on the accuracy of
forecasts of key macroeconomic time series for real-time post War-II data both for the
United States and United Kingdom. The results show that the AR and VAR specifica-
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specifications, in terms of point forecasting to some degree and density forecasting to a
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1 Introduction

A growing number of studies have provided evidence of time-varying volatility in the

economies of many industrialized nations. To this point, most available evidence, based

on data through the early to mid-2000’s, has highlighted the Great Moderation (e.g., Stock

and Watson 2003, 2007, Cogley and Sargent 2005, Primiceri 2005, Koop and Potter 2007,

Benati 2008, Giordani and Villani 2010, and Justiniano and Primiceri 2010). Some more

recent studies have shown that, following the Great Moderation, volatility rose sharply dur-

ing the sharp recession of 2007-2009 (e.g., Clark 2009, 2011, and Curdia, Del Negro, and

Greenwald 2012).

Modeling the apparently significant time variation in macroeconomic volatility is im-

portant to the accuracy of a range of types of inference. In general, of course, least squares

estimates of VAR coefficients remain consistent in the face of conditional heteroskedasticity,

but OLS variance estimates do not. Moreover, modeling the conditional heteroskedasticity

can yield more efficient (GLS) estimates of VAR coefficients; Sims and Zha (2006) have

emphasized the value of volatility modeling for improving efficiency. Accordingly, in both

dimensions, taking account of time variation in volatility should improve the VAR-based

estimation and inference common in macroeconomic analysis. In particular, in VAR-based

analysis of impulse responses, variance decompositions, and historical decompositions —

used, for instance, to assess the effects of alternative monetary policies — modeling time

variation in conditional volatilities is likely to be important for accurate inferences.

In addition, modeling changes in volatility should help to improve the accuracy of density

forecasts from VARs. Shifts in volatility have the potential to result in forecast densities

that are either far too wide or too narrow. For instance, in light of the Great Moderation,

density forecasts for GDP growth in 2006 based on time series models assuming constant

variances over a sample such as 1960-2005 would probably be far too wide, with inflated

confidence intervals and probabilities of tail events such as recession. As another example, in

late 2008, density forecasts for 2009 based on time series models assuming constant variances

for 1985-2008 would have been too narrow. Results in Giordani and Villani (2010), Jore,

Mitchell, and Vahey (2010), and Clark (2011) support this intuition on the gains to point

and density forecasts of modeling shifts in conditional volatilities. D’Agostino, Gambetti,

and Giannone (2012) show that the combination of time-varying parameters and stochastic

volatility improves the accuracy of point and density forecasts. These benefits to allowing
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time-varying volatility could prove useful to central banks that provide density information

in the form of forecast fan charts and qualitative assessments of forecast uncertainty.

In most of the recent studies providing evidence of time-varying volatility (e.g., Stock

and Watson 2003, 2007, Cogley and Sargent 2005, Primiceri 2005, Benati 2008), the time

variation in volatility has been captured with a single model: stochastic volatility, in which

the log of volatility follows a random walk process. In Bayesian estimation algorithms, the

stochastic volatility specification is computationally tractable. In addition, studies such as

Clark (2011) and Carriero, Clark, and Marcellino (2012) have shown that it is effective for

improving the accuracy of density forecasts from AR models and Bayesian VARs. However,

there are alternatives that could also be effective for capturing changes in macroeconomic

volatility. Studies such as Koop and Potter (2007), Giordani and Villani (2010), and Groen,

Paap, and Ravazzolo (2012) have used models in which volatility is subject to potentially

many discrete breaks; others, such as Jore, Mitchell, and Vahey (2010), have used models

with a small number of discrete breaks. Yet another model of time-varying volatility would

be a GARCH specification. While the pioneering development of ARCH (Engle 1982) and

GARCH (Bollerslev 1986) models included applications to inflation, these models seem to

have become rare in recent macroeconomic modeling, with the exception of a few studies,

such as Canarella, et al. (2008) and Chung, et al. (2012). Karapanagiotidis (2012) consid-

ers yet another approach, using autoregressive Wishart processes to capture time-varying

volatility in macroeconomic BVARs for forecasting. Koop and Korobilis (2012) show that

a computational shortcut for allowing time-varying volatility, using a form of exponential

smoothing of volatility, improves the accuracy of point and density forecasts from larger

VARs.

While a number of studies in the finance literature have compared alternative models

of time-varying volatility of asset returns (e.g., Amisano and Geweke 2010, Hansen and

Lunde 2005, Nakajima 2012), no such broad comparison yet exists for macroeconomic vari-

ables. Accordingly, this paper compares alternative models of time-varying macroeconomic

volatility, included within autoregressive and vector autoregressive specifications for key

macroeconomic indicators and estimated using Bayesian inference. We base our compar-

ison on real-time out-of-sample forecast accuracy, for both point and density forecasts of

GDP growth, unemployment, inflation, and a short-term interest rate in both the United

States and United Kingdom.1

1In the finance literature, some studies compare volatility models for their efficacy in modeling returns
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The set of univariate AR models includes the following volatility specifications: constant

volatility; stochastic volatility (with both constant AR coefficients and time-varying AR

coefficients); GARCH; and a mixture of innovations model. The set of BVARs widens the

specification of the stochastic volatility process, to include: constant volatility; stochastic

volatility (with both constant AR coefficients and time-varying AR coefficients); stochastic

volatility following a stationary AR process; stochastic volatility coupled with fat tails; and

GARCH.2 The variables modeled include GDP growth, the unemployment rate, inflation in

the GDP deflator, and a short-term government bill yield. For both countries, our results

indicate that the AR and VAR specifications with stochastic volatility dominate models

with alternative volatility specifications, in terms of point forecasting to some degree and

density forecasting to a greater degree. Therefore, at least from a macroeconomic forecasting

perspective, these alternative volatility specifications seem to have no advantage over the

now widely-used stochastic volatility specification.

The paper proceeds as follows. Section 2 describes the data. Section 3 presents the

models and estimation methodology, with further estimation details in an appendix. Section

4 presents the results. Section 5 concludes.

2 Data

For both the U.S. and U.K., we use quarterly data to estimate models for growth of real

GDP, inflation in the GDP price index or deflator (henceforth, GDP inflation), unemploy-

ment rate, and 3-month government bill rate. We compute GDP growth and as 100 times

the log difference of real GDP and inflation as 100 times the log difference of the GDP price

index.

In the case of the U.S., we obtained (quarterly) real time data on GDP and the GDP

price index from the Federal Reserve Bank of Philadelphia’s Real Time Dataset for Macroe-

conomists, from which the first available vintage is 1965:Q4 and the last is 2011:Q4. For

simplicity, we use “GDP” and “GDP price index” to refer to the output and price series,

even though the measures are based on GNP and a fixed weight deflator for much of the

sample. As described in Croushore and Stark (2001), the vintages of the RTDSM are dated

to reflect the information available around the middle of each quarter. Normally, in a given

(e.g., Amisano and Geweke 2010, Nakajima 2012), while others compare volatility models for their efficacy
in modeling volatility (e.g., Hansen and Lunde 2005).

2To simplify computations, we do not consider a mixture model in the BVAR case.
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vintage t, the available GDP and GDP price index data run through period t− 1.

For the U.K., we obtained real time data on GDP and the GDP deflator from the

website of the Bank of England, with vintages starting in 1990:Q1 and ending in 2011:Q2.

The timing convention is similar to that for the U.S. data. While the Bank of England

provides vintages for each month of the year, we selected one month’s vintage per quarter.

Specifically, we selected data vintages for quarters 1-4 to correspond to the series available

in February, May, August, and November of each year (as in the RTDSM). In the handful

of cases in which the last quarter of data that should be available was not actually available

(apparently due to some publication delay), we used the vintage from the next month. For

example, if the vintage from February in year t did not include GDP data through Q4 of

year t− 1, we used the vintage from March in year t in place of the February vintage.

In the case of unemployment and interest rates, for which real-time revisions are small

to essentially non–existent, we simply abstract from real-time aspects of the data and use

currently available time series. For the U.S., we obtained monthly data on the unemploy-

ment rate and 3-month Treasury bill rate from the FAME database of the Federal Reserve

Board of Governors and formed the quarterly unemployment and interest rate as simple

within-quarter averages of the monthly data. For the U.K., we obtained a quarterly un-

employment rate from FAME and constructed a bill rate by merging a 1975-2011 series on

the 3-month Treasury yield (sterling) obtained from Bank of England web site with a 1962-

74 series on the 3-month interbank rate obtained from FAME (after merging the monthly

series, we converted to the quarterly frequency by averaging within the quarter).

For the U.S., we consider a forecast evaluation period of 1985:Q1 through 2011:Q2,

which involves real-time data vintages from 1985:Q1 through 2011:Q4. For each forecast

origin t starting with 1985:Q1, we use the real-time data vintage t to estimate the forecast

models and construct forecasts for periods t and beyond. We report results for forecast

horizons of 1, 2, 4, and 8 quarters ahead. In light of the time t − 1 information actually

incorporated in the models used for forecasting at t, the 1-quarter ahead forecast is a current

quarter (t) forecast, while the 2-quarter ahead forecast is a next quarter (t+1) forecast, etc.

The starting point of the model estimation sample is always 1955:Q1 (for some models, we

use data for the 1948-54 period to set the priors on some parameters, as detailed below).

For the U.K., we consider a forecast evaluation period of 1990:Q1 through 2010:Q4,

which involves real-time data vintages from 1990:Q1 (first available) through 2011:Q2. For
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each forecast origin t starting with 1990:Q1, we use the real-time data vintage t to estimate

the forecast models and construct forecasts for periods t and beyond. We report results

for forecast horizons of 1, 2, 4, and 8 quarters ahead. The starting point of the model

estimation sample is always 1978:Q1 (for some models, we use data for the 1971-77 period

to set the priors on some parameters, as detailed in the appendix).3

As discussed in such sources as Romer and Romer (2000), Sims (2002), and Croushore

(2006), evaluating the accuracy of real-time forecasts requires a difficult decision on what to

take as the actual data in calculating forecast errors. The GDP data available today for, say,

1985, represent the best available estimates of output in 1985. However, output as defined

and measured today is quite different from output as defined and measured in 1970. For

example, today we have available chain-weighted GDP; in the 1980s, output in the U.S. was

measured with fixed-weight GNP. Forecasters in 1985 could not have foreseen such changes

and the potential impact on measured output. Accordingly, we follow studies such as Romer

and Romer (2000) and Faust and Wright (2009) and use the second available estimates of

GDP/GNP and the GDP/GNP deflator as actuals in evaluating forecast accuracy. In the

case of h-quarter ahead forecasts made for period t+h with vintage t data ending in period

t − 1, the second available estimate is normally taken from the vintage t + h + 2 data set.

In light of our abstraction from real-time revisions in unemployment and the government

bill yields, for these series the real-time data correspond to the final vintage data.

3 Models

In this section we provide the specifications of our AR models and VAR models and provide

an overview of the methods used for estimation. The appendix provides further detail on

the estimation algorithms.

3.1 AR models

For each variable, we consider a baseline AR(p) model with constant shock variance:

yt = b0 +

p∑
i=1

biyt−i + vt, vt ∼ N(0, φ). (1)

To this baseline, we compare AR models with two different formulations of time-varying

volatility: GARCH and stochastic volatility. We also consider an AR model with both

3Our sample specification for the U.K. is constrained by the unemployment series, which doesn’t start
until 1971:Q1.
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time-varying parameters and stochastic volatility and an AR model that takes the mixture

of innovations form, developed in studies such as Koop and Potter (2007), Giordani, et al.

(2007), and Groen, Paap, and Ravazzolo (2012). All of our AR models include 2 lags for

GDP growth and 4 lags for inflation, unemployment rate and inflation.

The AR-GARCH model incorporates a common GARCH(1,1) process (as in, e.g., Chung,

et al. (2012)):4

yt = b0 +

p∑
i=1

biyt−i + vt

vt = h0.5
t εt, εt ∼ N(0, 1) (2)

ht = a0 + a1v
2
t−1 + a2ht−1, a0 > 0, a1 + a2 < 1.

The AR-SV model, considered in such studies as Clark (2011), takes the following form:

yt = b0 +

p∑
i=1

biyt−i + vt

vt = λ0.5
t εt, εt ∼ N(0, 1) (3)

log(λt) = log(λt−1) + νt, νt ∼ N(0, φ).

The AR-TVP-SV model takes the form given in Cogley and Sargent (2005), simplified

to a univariate process:

yt = b0,t +

p∑
i=1

bi,tyt−i + vt

bt = bt−1 + nt, var(nt) = Q

vt = λ0.5
t εt, εt ∼ N(0, 1) (4)

log(λt) = log(λt−1) + νt, νt ∼ N(0, φ).

Finally, the AR-mixture model is specified as follows:

yt = b0,t +

p∑
i=1

bi,tyt−i + vt

vt = λ0.5
t εt, εt ∼ N(0, 1)

bj,t = bj,t−1 + κj,t nj,t, j = 0, . . . , p (5)

log(λt) = log(λt−1) + κp+1,t np+1,t

Pr[κj,t = 1] = πj , j = 0, . . . , p+ 1

var
(
(n0,t, . . . , np+1,t)

′) = diag(q0, q1, . . . , qp+1).

4We also tried a version with Student-t residuals where the degrees of freedom τ are estimated. Results
were worse than the normal case and we do not report them.
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3.2 VAR models

For our set of k = 4 variables, we consider a baseline VAR(p) model with a constant

variance-covariance matrix of shocks:

yt = B(L)yt−1 + vt, vt ∼ N(0,Φ). (6)

To this baseline, we compare VAR models with various formulations of time-varying

volatility.5 Two of the models couple the VAR with GARCH or stochastic volatility. Still

another model includes time-varying parameters and stochastic volatility. In other models,

we consider some variations on the stochastic volatility specification that has been most

common in recent macroeconomic modeling. One variation consists of a stationary, rather

than random walk, stochastic volatility process. The other variation consists of adding fat

tails to stochastic volatility, using the fat tails formulation of Jacquier, Polson, and Rossi

(2004). All of the VAR models include 4 lags.

The VAR-GARCH model incorporates a GARCH(1,1) process for the orthogonalized

error of each VAR equation:

yt = B(L)yt−1 + vt

vt = A−1H0.5
t εt, εt ∼ N(0, Ik), Ht = diag(h1,t, . . . , hk,t) (7)

hi,t = a0,i + a1,iv
2
i,t−1 + a2,ihi,t−1, a0,i > 0, a1,i + a2,i < 1, ∀ i = 1, k,

where A = a lower triangular matrix with ones on the diagonal and non-zero coefficients

below the diagonal.

The VAR-SV model includes the conventional formulation of a random walk process for

log volatility:

yt = B(L)yt−1 + vt

vt = A−1Λ0.5
t εt, εt ∼ N(0, Ik), Λt = diag(λ1,t, . . . , λk,t) (8)

log(λi,t) = log(λi,t−1) + νi,t, νi,t ∼ N(0, φi) ∀ i = 1, k,

where A = a lower triangular matrix with ones on the diagonal and non-zero coefficients

below the diagonal.

5In results not reported in the interest of brevity, we also considered a BVAR with fat tails but not
stochastic volatility. Forecasts from this model were clearly less accurate than forecasts from the model with
stochastic volatility. We also tried a version of the VAR-GARCH with Student-t residuals where the degrees
of freedom τ are estimated. Results were worse than the normal case and we do not report them.
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The VAR-ARSV specification treats log volatility as following an AR(1) process, which

we will force to be stationary by using a tight prior:

yt = B(L)yt−1 + vt

vt = A−1Λ0.5
t εt, εt ∼ N(0, Ik), Λt = diag(λ1,t, . . . , λk,t) (9)

log(λi,t) = a0,i + a1,i log(λi,t−1) + νi,t, νi,t ∼ N(0, φi) ∀ i = 1, k.

With macro time series fairly limited in length (especially compared to finance time series),

it is likely to be difficult to reliably estimate both time-varying volatility and the parameters

of the autoregressive volatility process. Accordingly, we use a tight prior to almost fix the

slope coefficients a1,i, i = 1, . . . , k (but not the intercept), at three different values, giving

us three different VAR-ARSV specifications: 0.9, 0.8, and 0.5.

The VAR-SVt model augments the (random walk) stochastic volatility specification to

include fat tails, similarly to the DSGE specification considered in Curdia, Del Negro, and

Greenwald (2012):

yt = B(L)yt−1 + vt

vt = A−1Q0.5
t Λ0.5

t εt, εt ∼ N(0, Ik)

Λt = diag(λ1,t, . . . , λk,t), Qt = diag(q1,t, . . . , qk,t) (10)

log(λi,t) = log(λi,t−1) + νi,t, νi,t ∼ N(0, φi) ∀ i = 1, k

d/qi,t ∼ i.i.d. χ2
d,

where d denotes the degrees of freedom of the Student-t distribution that is the marginal

distribution of q0.5
i,t εi,t. For simplicity, in lieu of estimating the degrees of freedom, we fixed

it, considering three different settings, estimating (separately) models with 5, 10, and 15

degrees of freedom.

Finally, letting Xt denote the collection of right-hand side variables of each equation of

the VAR, the VAR-TVP-SV model takes the form given in Cogley and Sargent (2005):

yt = X
′
tBt + vt

Bt = Bt−1 + nt, var(nt) = Q

vt = A−1Λ0.5
t εt, εt ∼ N(0, Ik), Λt = diag(λ1,t, . . . , λk,t) (11)

log(λi,t) = log(λi,t−1) + νi,t, νi,t ∼ N(0, φi) ∀ i = 1, k,

where A = a lower triangular matrix with ones on the diagonal and non-zero coefficients

below the diagonal.
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3.3 Estimation algorithms

We estimate all of the models described above using Bayesian Markov Chain Monte Carlo

(MCMC) methods. In generating forecasts, we use a recursive estimation scheme, expanding

the model estimation sample as forecasting moves forward in time. This section provides a

brief overview of our methods. The appendix and the studies cited below provide additional

detail on algorithms and priors.

For the AR and BVAR models with constant variances, we use the Normal-diffuse prior

and posterior detailed in such sources as Kadiyala and Karlsson (1997) and estimate the

models by Gibbs sampling.

For the AR-GARCH and VAR-GARCH models, we use a Metropolis-within-Gibbs

MCMC algorithm, combining Gibbs sampling steps for model coefficients with a random

walk Metropolis-Hastings (MH) algorithm to draw the GARCH parameters. Our MH algo-

rithm for the GARCH parameters is similar to the ones in Vrontos, Dellaportas, and Politis

(2000) and So, Chen, and Chen (2005). To speed convergence and allow optimal mixing,

we employ an adaptive MH-MCMC algorithm that combines a random walk Metropolis

(RW-M) and an independent kernel (IK)MH algorithm. In the case of the VAR-GARCH

model, the Choleski matrix A is handled in the same way as it is in the VARs with stochastic

volatility, which is the same as in Cogley and Sargent (2005).

To estimate the AR-SV, VAR-SV, AR-TVP-SV and VAR-TVP-SV models, we use

Metropolis-within-Gibbs MCMC algorithms, combining Gibbs sampling steps for model

coefficients with Cogley and Sargent’s (2005) Metropolis algorithm (taken from Jacquier,

Polson, and Rossi (1994)) for stochastic volatility. For AR models with stochastic volatility,

our algorithm is the same as that used in Clark (2011). For the AR models with TVP and

stochastic volatility, our algorithm takes the form described in Cogley and Sargent (2005).

For the VAR-ARSV specification, the algorithm is the same, but for the addition of a step

to draw the coefficients of the AR processes of each variable’s volatility. As noted above,

we nearly fix the slope coefficient at particular values, by setting the prior mean to either

0.9, 0.8, or 0.5, with a prior standard deviation of 0.05.

To estimate the VAR-SVt model, we extend the algorithm used for the VAR-SV spec-

ification to accommodate fat tails, following the approach of Jacquier, Polson, and Rossi

(2004). The key extension is the addition of a step to draw, for each variable, the time

series of qi,t from an inverse Gamma distribution. The other steps are the same as those of
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the VAR-SV algorithm, but for a few small normalizations of data or innovations to reflect

the qi,t terms.

Finally, our approach to estimating the AR-mixture model is taken from Groen, Paap,

and Ravazzolo (2012). The steps in their Gibbs sampler include: using the algorithm of

Gerlach, et al. (2000) to sample the latent states κj,t that indicate the timing of breaks

in the coefficients and variance; using the simulation smoother of Carter and Kohn (1994)

to sample the regression parameters; and using the algorithm of Kim, Shepard, and Chib

(1998) to draw the time-varying volatility and the variance of innovations to volatility.

All of our reported results are based on samples of 5000 posterior draws, retained from

larger samples of draws. However, we use different burn periods and thinning intervals for

different models, depending on the mixing properties of the algorithms (drawing on our own

results on mixing properties and others in the literature, such as those in Primiceri (2005),

Clark and Davig (2011), and Carriero, Clark, and Marcellino (2012)). Details are given in

the appendix.

4 Results

To evaluate the models, we compare their accuracy in real-time out-of-sample forecasting,

first for the U.S. and then for the U.K. To focus on the efficacy of alternative models of

time-varying volatility, we separate our comparisons of AR models from our comparisons

of VAR models. Among AR models, we compare the AR models with different volatility

specifications to a baseline AR with constant volatility. Among VAR models, we compare

the VARs with different volatility models to a baseline VAR with constant volatility. As

noted above, we use a recursive estimation scheme in generating forecasts, expanding the

model estimation sample as forecasting moves forward in time. In all cases, we provide

results for our full sample and for a sample ending in 2007:Q4, to strip out possible effects

of the severe recession.

For each country, we first consider the accuracy of point forecasts, using root mean

square errors (RMSEs). We then consider density forecasts, using both the average log

predictive score and the average continuous ranked probability score (CRPS). The predictive

score, motivated and described in such recent sources as Geweke and Amisano (2010), is

commonly viewed as the broadest measure of density accuracy. At each forecast origin, we

compute the log predictive score using the quadratic approximation of Adolfson, Linde, and
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Villani (2007):

st(y
o
t+h) = −0.5

(
n log(2π) + log |Vt+h|t|+

(
yot+h − ȳt+h|t

)′
V −1
t+h|t

(
yot+h − ȳt+h|t

))
, (12)

where yot+h denotes the observed outcome, ȳt+h|t denotes the posterior mean of the forecast

distribution, and Vt+h|t denotes the posterior variance of the forecast distribution.

As indicated in Gneiting and Raftery (2007) and Gneiting and Ranjan (2011), some

researchers view the continuous ranked probability score as having advantages over the log

score. In particular, the CRPS does a better job of rewarding values from the predictive

density that are close to but not equal to the outcome and is less sensitive to outlier

outcomes. The CRPS, defined such that a lower number is a better score, is given by

CRPSt(y
o
t+h) =

∫ ∞
−∞

(
F (z)− 1{yot+h ≤ z}

)2
dz (13)

= Ef |Yt+h − yot+h| − 0.5Ef |Yt+h − Y ′t+h|,

where F denotes the cumulative distribution function associated with the predictive density

f , 1{yot+h ≤ z} denotes an indicator function taking value 1 if yot+h ≤ z and 0 otherwise,

and Yt+h and Y ′t+h are independent random draws from the posterior predictive density.

See Ravazzolo and Vahey (2010) for an application to disaggregate inflation.

4.1 U.S. results

Table 1 provides RMSEs for real-time forecasts obtained with U.S. data. For the baseline

AR and VAR models with constant volatilities, we report the actual RMSEs. For the

other AR models, we report ratios of each model’s RMSE to the baseline AR model with

constant volatility. Similarly, for the BVAR models with time-varying volatility, we report

ratios of each model’s RMSE to the baseline VAR with constant volatility. Entries less than

1 indicate that the given model yields forecasts more accurate than those from the baseline.

In summarizing the results, we will focus on the full sample for most of the discussion and

then conclude with a review of differences in the results for the shorter sample.

The results in Table 1 indicate that, for AR models, allowing time varying volatil-

ity tends to slightly to modestly improve forecast accuracy, for all variables except GDP

growth. Taking the stochastic volatility specification as the baseline for time-varying volatil-

ity, none of the other volatility formulations yield any consistent, sizable advantage over

stochastic volatility. The same is true for the model with both TVP and stochastic volatil-

ity. Sometimes a GARCH, mixture, or TVP-SV model can be better, but other times these
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models can be worse, with the performance of the mixture model tending to be the most

variable. Consider, for example, inflation forecasts over the 1985:Q1-2011:Q2 sample. At

the 1-quarter horizon, the AR-SV model has a lower RMSE ratio than the AR-GARCH and

AR-mixture models. At the 8-quarter horizon, the AR-mixture has a lower RMSE than the

AR-SV and AR-GARCH specifications. At both horizons, adding TVP further improves

(slightly to modestly) on the RMSE of the AR-SV model.

Within the set of VAR models, the standard stochastic volatility specification (with

log volatility following a random walk) consistently yields small to modest gains in point

forecast accuracy. The VAR-SV model almost always has a lower RMSE than the VAR with

GARCH. The modifications of stochastic volatility that make volatility stationary, allow fat

tails, or allow TVP don’t offer any notable gains over the standard VAR-SV specification.

Consider, for example, forecasts of GDP growth. At horizons between 1 and 4 quarters, the

VAR-SV model improves on the RMSE of the VAR by about 7 to 12 percent, depending

on the horizon. The VAR-ARSV model with an AR(1) coefficient of 0.9 in the volatility

processes improves on the RMSE of the VAR by about 6 to 10 percent of horizons between 1

and 4 quarters. The VAR-SVt model with fat tails based on 5 degrees of freedom improves

on the baseline RMSE by 8 to 12 percent at the same horizons. In contrast, the VAR-

GARCH specification yields RMSEs that exceed the baseline RMSEs by 3 to 9 percent

between horizons of 1 and 8 quarters.

Table 2 provides average log predictive scores for real-time forecasts obtained with U.S.

data. For the baseline AR and VAR models with constant volatilities, we report the actual

scores (defined so that a higher score is a better result). For the other AR models, we report

differences in score relative to the baseline AR model with constant volatility, such that a

positive number indicates a model beats the baseline. Similarly, for the BVAR models with

time-varying volatility, we report differences in score relative to the baseline VAR with

constant volatility.

The results in Table 2 indicate that, within the AR class of models, allowing time varying

volatility generally improves the accuracy of density forecasts, more so at shorter horizons

than longer horizons. At shorter horizons, the gains in average scores are bigger than the

gains in RMSEs associated with time-varying volatility models. As with the point forecasts,

taking the stochastic volatility specification as the baseline for time-varying volatility, none

of the other volatility formulations or the TVP-SV model yield any consistent, sizable
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advantage over the baseline model with stochastic volatility. Sometimes a GARCH or

mixture model or the AR-TVP-SV model can be better, but other times these models can

be worse, with the mixture model generally performing poorly.6 Consider forecasts of GDP

growth. At the 1-quarter horizon, the AR-SV model has a score about 20 percent better

(higher) than the score of the AR with constant volatility, while the AR-GARCH model

has a score about 17 percent above the baseline, and the AR-mixture model has a score

about 7 percent below the baseline. At the 8-quarter horizon, the AR-SV model’s score is

essentially the same as the baseline model’s, while the scores of the GARCH and mixture

models are lower than the score of the AR model with constant volatility.

Within the set of VAR models, the standard stochastic volatility specification (with log

volatility following a random walk) yields healthy gains in average log predictive scores for

most variables and horizons, with the exception of unemployment and interest rates at longer

horizons. The VAR-SV model dominates the VAR with GARCH, again with the exception

of unemployment and interest rates at longer horizons. The modifications of stochastic

volatility that make volatility stationary or allow fat tails don’t offer any consistent gains

over the standard VAR-SV specification, but stationarity does help longer-horizon forecasts

of unemployment and the interest rate. Similarly, allowing TVP helps in some cases and

hurts in others.

Consider, for example, forecasts of GDP growth. At horizons between 1 and 8 quarters,

the VAR-SV model improves on the average log score of the VAR by about 6 to 19 percent,

depending on the horizon. At the 1-quarter horizon, the VAR-GARCH specification im-

proves on the baseline score by 8 percent (compared to 19 percent for the VAR-SV model);

at other horizons, GARCH lowers the score by about 3 to 19 percent. The VAR-ARSV

specification with an AR(1) coefficient of 0.9 improves on the average log score of the VAR

by about 0 to 19 percent, depending on the horizon. The VAR-SVt model using 10 degrees

of freedom raises scores (relative to the constant volatility benchmark) by 8 to 19 percent.

However, in the case of unemployment and interest rates, making the stochastic volatility

process stationary improves on the VAR-SV model’s accuracy for longer-horizon density

forecasts. As we detail below, this pattern seems to be associated with the extreme outcomes

of the recent sharp recession. Consider forecasts of unemployment. The relative score

measure for the VAR-SV model declines from about 16 percent at the 1-quarter horizon to

6GARCH seems to work best for the interest rate. For example, at the 1-quarter ahead horizon, the score
difference of the AR-GARCH model is 37.3 percent, compared to 9.6 percent for the AR-SV specification.
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-71 percent at the 8-quarter horizon. Making the volatility process stationary mitigates the

sharp decline in performance at longer horizons. For example, the relative score measure

for the VAR-ARSV model using a coefficient of 0.9 declines from about 16 percent at the

1-quarter horizon to -12 percent at the 8-quarter horizon, while the score of the model using

a coefficient of 0.8 declines from about 12 percent to -5 percent.

Table 3 provides average CRPS results for real-time U.S. forecasts. For the baseline AR

and VAR models with constant volatilities, we report the levels of the average CRPS. For

the other AR models, we report ratios of each model’s average CRPS to the baseline AR

model with constant volatility. Similarly, for the BVAR models with time-varying volatility,

we report ratios of each model’s average CRPS to the baseline VAR with constant volatility.

Entries less than 1 indicate that the given model performs better, by the CRPS metric, than

the baseline model.

The results in Table 3 indicate that, within the AR class of models, allowing time varying

volatility consistently yields increases in density accuracy as measured by the CRPS. Taking

the stochastic volatility specification as the baseline for time-varying volatility, none of the

other volatility formulations yield any consistent, sizable advantage over stochastic volatility.

Sometimes a GARCH model, mixture model, or TVP-SV specification can be very similar to

or better than the baseline stochastic volatility model, but other times these models can be

worse. Consider, for example, inflation forecasts over the 1985:Q1-2011:Q2 sample. Relative

to the baseline AR model with constant volatility, the AR-SV specification improves the

CRPS by 10 to 13 percent, depending on horizon. Adding time-varying parameters further

improves (slightly at most horizons) the accuracy of density forecasts of inflation. The gains

in CRPS are smaller for both the AR-GARCH and AR-mixture models, ranging from 1 to

2 percent for the former and 7 to 12 percent for the latter. In the case of unemployment

forecasts, the AR-SV model improves the CRPS by 1 to 4 percent, while the AR-GARCH

does a bit better at some horizons, improving the CRPS by 1 to 5 percent, and the mixture

model worsens the average CRPS by 2 to 41 percent, depending on horizon.

Within the set of VAR models, the standard stochastic volatility specification yields

healthy gains in average CRPS for most variables and horizons, with the exception of

unemployment and interest rates at longer horizons. The VAR-SV almost uniformly domi-

nates the VAR with GARCH, which is generally inferior to the baseline VAR with constant

volatility. The modifications of stochastic volatility that make volatility stationary or allow
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fat tails don’t offer any consistent, notable gains over the standard VAR-SV specification.

The same applies to the VAR-TVP-SV specification. Consider, for example, forecasts of

GDP growth. At horizons between 1 and 8 quarters, the VAR-SV model improves on the

average CRPS of the VAR by about 7 to 14 percent. The VAR-GARCH’s CRPS are worse

than the baseline VAR’s, by an amount ranging from a little more than 0 to as much as

13 percent. The VAR-ARSV specification with an AR(1) coefficient of 0.9 improves on the

average CRPS of the VAR by about 6 to 13 percent, while the VAR-SVt model using 10

degrees of freedom improves the CRPS by 10 to 14 percent.

In light of the unprecedented developments of the 2007-2009 recession, it is possible that

some of the findings described above are distorted by the recession. To assess that possibility,

we consider a shorter sample of 1985:Q1-2007:Q4, which omits the severe outcomes of the

recession. For the most part, the findings we just described for the 1985:Q1-2011:Q2 sample

also apply to the 1985:Q1-2007:Q4 sample. However, there are some differences across

results for the samples, likely due to some very large forecast errors during the recession

(essentially, the severity of the recession was a very small tail event, based on the post-war

history).7 The most notable difference is in average log predictive scores: in the pre-crisis

sample compared to the full sample, there is less of a tendency for scores from models

with random walk stochastic volatility to decline as the horizon increases. Accordingly,

there are fewer cases in which the stochastic volatility specification that treats volatility

as stationary has some advantage (at longer horizons) over the specification that treats

volatility as a random walk. For example, for forecasts of GDP growth from the AR and

VAR models, while the gains to stochastic volatility decline as the horizon increases in the

full sample results (e.g., for the VAR-SV, the relative score declines from 0.193 at h = 1 to

0.060 at h = 8), the gains do not decline in the shorter, pre-crisis sample (for the VAR-SV,

the relative score is 0.222 at h = 1 and 0.214 at h = 8). A similar pattern applies to

unemployment rate forecasts.

These patterns reflect some broad influences of the crisis on density forecast perfor-

mance. To understand these, for the BVAR-SV and the constant volatility BVAR model

we have taken a closer look at 1-step ahead predictive scores over the 2006-2010 period. This

analysis indicates the performance of the stochastic volatility specification briefly deterio-

rates relative to the performance of the constant volatility BVAR for the following reasons.

7Large shocks are evident in the baseline AR and VAR RMSEs, log predictive scores, and CRPS, which
are worse in the full sample than in the pre-crisis sample.
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Before the crisis, the BVAR-SV specification generally scores better than the BVAR be-

cause the BVAR-SV model better picks up the effects of the Great Moderation on volatility.

Some of the extreme outcomes of the crisis period are more unusual by the standards of the

BVAR-SV-estimated (narrower) predictive densities than by the standards of the BVAR-

estimated (wider) predictive densities. Consequently, for a few quarters, the BVAR tends

to score better than the BVAR-SV models. But after a few quarters, the BVAR-SV model

has picked up enough of a rise in volatility that it resumes yielding predictive scores better

than the scores from the BVAR.

4.2 U.K. results

Tables 4-6 provide, respectively, RMSE, average log score, and average CRPS results for

real-time U.K. forecasts. As in the U.S. results, the tables provide the levels of RMSEs,

scores, and CRPS for the baseline AR and VAR models and relative RMSEs, scores, and

CRPS for all other models. We deliberately provide a discussion of the U.K. results that is

briefer than the discussion of the U.S. results.

The RMSE results in Table 4 indicate that, for AR models, allowing time varying

volatility is somewhat less helpful in U.K. data for the full sample than in U.S. data. In

the U.K. case, allowing time-varying volatility consistently improves point forecast accuracy

for only the interest rate; time-varying volatility makes GDP growth forecasts consistently

less accurate and has mixed effects on the accuracy of inflation and unemployment fore-

casts. Neither GARCH nor the mixture model has any consistent advantage over stochastic

volatility, and the performance of the AR-mixture model seems to be most variable (across

variables and horizons). Adding TVP also fails to yield systematic gains over the baseline

model with stochastic volatility. Consider, for example, unemployment rate forecasts over

the 1985:Q1-2010:Q4 sample. At the 1-quarter horizon, the AR-SV model has the lowest

RMSE, by a small margin, with a RMSE ratio of 0.980, while the AR-GARCH, AR-mixture,

and AR-TVP-SV models yield RMSE ratios of 1.030, 1.234, and 1.025, respectively. At the

8-quarter horizon, the RMSE ratios are 0.942 for the AR-SV model and 0.958, 1.549, and

0.869 for the AR-GARCH, AR-mixture, and AR-TVP-SV specifications.

Within the set of VAR models, the standard stochastic volatility specification (with

log volatility following a random walk) consistently yields gains in point forecast accuracy,

except in the case of GDP growth at multi-step horizons. As in the U.S. results, the

modifications of stochastic volatility that make volatility stationary or allow fat tails or
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allow TVP don’t offer any notable gains over the standard VAR-SV specification. Similarly,

the VAR-GARCH sometimes yields forecasts more accurate than those from the VAR-SV,

but often yields forecasts considerably less accurate. Consider, for example, forecasts of

inflation. At horizons between 1 and 8 quarters, the VAR-SV model improves on the

RMSE of the VAR by about 10 to 26 percent, depending on the horizon. The VAR-ARSV

model with an AR(1) coefficient of 0.9 improves on the baseline RMSE by 11 to 28 percent,

while the VAR-SVt model using 5 degrees of freedom improves on the baseline by 9 to 23

percent. For inflation, the VAR-GARCH yields gains in the accuracy that are comparable

to, but not as large, as those from the VAR-SV.

The average log score results in Table 5 indicate that, for the full sample of 1985-2010,

allowing time varying volatility is somewhat less helpful in U.K. data than in U.S. data,

particularly with AR models. With the set of AR models, including stochastic volatility

improves average log scores for inflation and unemployment rate forecasts at all horizons, but

not for interest rates at any horizons or GDP growth at horizons greater than 1 quarter.

The models with time-varying volatility fare much better in the 1985-2007 sample than

the full sample, suggesting very large effects of the sharp recession. Among AR models

with time-varying volatility, it is once again the case that none of the alternatives offer any

consistent advantage over the standard stochastic volatility specification (in which volatility

follows a random walk). Consider, for example, forecasts of GDP growth. In the full sample,

the score differential for the AR-SV model declines from 0.240 at the 1-quarter horizon to

-2.871 at the 8-quarter horizon, while the score of the AR-mixture model falls from -1.982

at the 1-quarter horizon to -2.445 at the 8-quarter horizon. In the 1985-2007 sample, the

score differential of the AR-SV model is better, at 0.403 and 0.272 at the 1-quarter and

8-quarter horizons. The score differentials of the AR-mixture model are also better in the

shorter sample than the full, at -0.025 at the 1-quarter horizon and 0.500 at the 8-quarter

horizon.

Within the set of VAR models, it is also the case that time-varying volatility is less

helpful to scores over the full sample than over the shorter sample, although the scores of

VARs with time-varying volatility in the full sample look a little better than do the scores

of AR models with time-varying volatility (we included in the U.S. results presentation an

explanation of the effects of the crisis on predictive scores). In most cases, the VAR-SV

model dominates the VAR with GARCH. The modifications of stochastic volatility that
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make volatility stationary or allow fat tails or allow TVP don’t offer any consistent gains

over the standard VAR-SV specification, except that, in the full sample, stationarity of

volatility often improves longer-horizon forecast scores. Consider forecasts of GDP growth.

In the full sample, the VAR-SV improves on the score of the baseline VAR at the 1-step

horizon but not the 8-step horizon, yielding score differentials of 0.362 and -1.147 at these

horizons. For the same sample, the VAR-ARSV with an AR(1) coefficient of 0.8 yields

corresponding score differentials of 0.367 and -0.087. In the pre-crisis period, the VAR-SV

yields score differentials of 0.483 at the 1-quarter horizon and 0.222 at the 8-quarter horizon,

compared to differentials of 0.345 and 0.018 for the VAR-ARSV with an AR(1) coefficient

of 0.8.

Finally, the CRPS results for the U.K. in Table 6 are more similar to the results for the

U.S. than are the results for the other forecast metrics. This greater similarity in CRPS

results seems to reflect much less sensitivity of the CRPS to the large shocks of the 2007-2009

recession. Within the AR class of models, allowing time varying volatility often, although

not always, increases density accuracy as measured by the CRPS. Taking the stochastic

volatility specification as the baseline for time-varying volatility, none of the other volatility

formulations yields any consistent, sizable advantage over stochastic volatility. Consider,

for example, inflation forecasts over the 1985:Q1-2010:Q4 sample. Relative to the baseline

AR model with constant volatility, the AR-SV specification improves the CRPS by 6 to 13

percent, depending on horizon. The gains in CRPS are smaller for both the AR-GARCH

and AR-mixture models, ranging from a loss of 5 percent to a gain of 7 percent for the

former and a gain of 2 to 30 percent for the latter.

Within the set of VAR models, the standard stochastic volatility specification (with

log volatility following a random walk) yields healthy gains in average CRPS for most

variables and horizons, with the exception of unemployment forecasts at longer horizons.

The VAR-SV often (but not always) dominates the VAR with GARCH. The modifications

of stochastic volatility that make volatility stationary or allow fat tails or allow TVP don’t

offer any consistent, notable gains over the standard VAR-SV specification. Consider, for

example, forecasts of inflation. At horizons between 1 and 8 quarters, the VAR-SV model

improves on the average CRPS of the VAR by about 14 to 30 percent. The VAR-ARSV

specification with an AR(1) coefficient of 0.9 improves on the average CRPS of the VAR

by about 14 to 32 percent, while the VAR-SVt model using 10 degrees of freedom improves
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the CRPS by 14 to 29 percent. For the same models, the CRPS ratios are very similar in

the 1985-2007 sample.

5 Conclusions

This paper compares, from a forecasting perspective, alternative models of time-varying

macroeconomic volatility, included within autoregressive and vector autoregressive specifi-

cations for key macroeconomic indicators. The set of models includes constant volatility;

stochastic volatility (with both constant AR coefficients and time-varying AR coefficients);

stochastic volatility following a stationary AR process; stochastic volatility coupled with fat

tails; GARCH; and a mixture of innovations model. Real-time forecasts of U.S. and U.K.

GDP growth, the unemployment rate, inflation in the GDP deflator, and a short-term gov-

ernment bill yield over the last three decades are produced. For both countries, our results

indicate that the AR and VAR specifications with stochastic volatility dominate models

with alternative volatility specifications, in terms of point forecasting to some degree and

density forecasting to a greater degree, in particular when using proper scoring rules such

as the CRPS. Results are robust to the inclusion of the recent Great Recession period.

We conclude that, from a macroeconomic forecasting perspective, these alternative volatil-

ity specifications seem to have no advantage over the now widely-used stochastic volatility

specification.

6 Appendix

This appendix details the MCMC algorithms used to estimate and forecast with the models

considered in the paper. In the interest, in most cases we provide details for the VAR

specifications and omit details on AR specifications, which differ in that they do not involve

the step necessary to estimate the Choleski matrix A or use A to orthogonalize innovations.

For generality and simplicity in presentation, in this exposition we use yt to refer to the

endogenous variable or vector of variables, and we use Xt to denote the vector of variables

on the right-hand side of each equation.

6.1 VAR with constant volatility

Under the Normal-diffuse prior, we estimate the VAR model with a two-step Gibbs sampler,

detailed in such studies as Kadiyala and Karlsson (1997).
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Step 1: Draw the vector of VAR coefficients B conditional on the error variance-

covariance matrix Φ.

We draw the VAR coefficients from a conditional posterior distribution that is multi-

variate normal, as in equation (16a) of Kadiyala and Karlsson (1997).

Step 2: Draw the error covariance matrix Φ conditional on the VAR coefficients B.

We draw the error variance matrix from a conditional posterior distribution that is

inverse Wishart, as in equation (16b) of Kadiyala and Karlsson (1997).

Forecast density:

To generate draws of forecasts, for each draw of the VAR coefficients and error covariance

matrix, we generate shocks from t+1 through t+H, where H denotes the maximum forecast

horizon considered, using the given draw of Φ. We use the shocks, the autoregressive

structure of the VAR, and the draw of coefficients to compute the draw of yT+h, h =

1, . . . ,H. The resulting set of draws of yT+h are used to compute the forecast statistics of

interest (RMSE based on the posterior median, etc.).

Priors:

For the VAR model, we use a conventional Minnesota prior, without cross-variable

shrinkage:

µ
B

such that E[B
(ij)
l ] = 0 ∀ i, j, l (14)

ΩB such that V [B
(ij)
l ] =

{
θ2

l2
σ2
i

σ2
j

for l > 0

ε2σ2
i for l = 0

(15)

Following common settings, we use θ = 0.2 and ε = 1000, and we set the scale parameters

σ2
i at estimates of residual variances from AR(4) models from the estimation sample. With

all of the variables of our VAR models transformed for stationarity (in particular, we use

growth rates of GDP, the price level, etc.), we set the prior mean of all the VAR coefficients

to 0.

6.2 VAR with TVP and Stochastic Volatility

We estimate the VAR-TVP-SV model with a five-step Metropolis-within-Gibbs MCMC

algorithm, following studies such as Cogley and Sargent (2005) and Primiceri (2005). The

Metropolis step is used for the estimation of stochastic volatility, following Cogley and

Sargent (2005) in their use of the Jacquier, Polson, and Rossi (1994) algorithm.

Step 1: Draw the time series of the vector of VAR coefficients Bt conditional on the

history of Λt, Q, A, and Φ, where Φ denotes a diagonal matrix with elements φi, i = 1, . . . , k.
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As detailed in Primiceri (2005), drawing the VAR coefficients involves using the Kalman

filter to move forward in time, a backward smoother to obtain posterior means and variances

of the coefficients at each point in time, and then drawing coefficients from the posterior

normal distribution. For the backward smoothing, we use the algorithm of Durbin and

Koopman (2002) instead of the Carter and Kohn (1994) algorithm used by Primiceri. Koop

and Korobilis (2009) note that either algorithm can be used for VARs with time-varying

parameters; the software we use makes the Durbin and Koopman (2002) algorithm faster.

The mean and variance of the period 0 coefficient vector used in the smoother is fixed at

the prior mean and variance described below.

Step 2: Draw the elements of A conditional on the history of Bt, the history of Λt, Q,

and Φ.

Following Cogley and Sargent (2005), rewrite the VAR as

A(yt −X ′tBt) = Aŷt ≡ ỹt = Λ0.5
t εt, (16)

where, conditional on Bt, ŷt is observable. This system simplifies to a set of i = 2, . . . , k

equations, with equation i having as dependent variable ŷi,t and as independent variables

−1 · ŷj,t, j = 1, . . . . , i − 1, with coefficients aij . Multiplying equation i by λ−0.5
i,t eliminates

the heteroskedasticity associated with stochastic volatility. Then, proceeding separately

for each transformed equation i, draw the i’th equation’s vector of coefficients ai (a vector

containing aij for j = 1, . . . , i− 1) from a normal posterior distribution with the mean and

variance implied by the posterior mean and variance computed in the usual (OLS) way. See

Cogley and Sargent (2005) for details.

Step 3: Draw the elements of the variance matrix Λt conditional on the history of Bt,

A, Q, and Φ.

Following Cogley and Sargent (2005) and Primiceri (2005), the VAR can be rewritten

as

A(yt −X ′tBt) ≡ ỹt = Λ0.5
t εt,

where εt ∼ N(0, Ik). Taking logs of the squares yields

log ỹ2
i,t = log λ2

i,t + log ε2i,t, i = 1, . . . , k.

The conditional volatility process is

log(λ2
i,t) = log(λ2

i,t−1) + νi,t, νi,t ∼ iid N(0, φi), i = 1, . . . , k.
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The estimation of the time series of λ2
i,t proceeds equation by equation, using the measured

log ỹ2
i,t and Cogley and Sargent’s (2005) version of the Metropolis algorithm of Jacquier,

Polson, and Rossi (1994); see Cogley and Sargent for further detail.

Step 4: Draw the variance matrix Q conditional on the history of Bt, the history of Λt,

A, and Φ.

Following Cogley and Sargent (2005) and Primiceri (2005), the sampling of Q, the

variance-covariance matrix of innovations to the VAR coefficients, is based on inverse

Wishart priors and posteriors. The scale matrix of the posterior distribution is the sum

of the prior mean × the prior degrees of freedom and
∑T

t=1 n̂tn̂
′
t, where n̂t denotes the

innovations to the posterior draws of coefficients obtained in step 1.

Step 5: Draw the variances φi, i = 1, . . . , k, conditional on the history of Bt, the history

of Λt, A, and Q.

Following Cogley and Sargent (2005), the sampling of φi, the variance of innovations

to log variance associated with VAR equation i, is based on inverse Gamma priors and

posteriors. Each equation’s volatility is treated independently. The scale factor of the

posterior distribution is the sum of the prior mean × the prior degrees of freedom and∑T
t=1 ν̂

2
i,t, where ν̂i,t denotes the innovations to the posterior draw of the volatility for

variable i obtained in step 3.

Forecast density:

To generate draws of forecasts, we follow Cogley, Morozov, and Sargent’s (2005) ap-

proach to simulating the predictive density. Let H denote the maximum forecast horizon

considered. From a forecast origin of period T , for each retained draw of the time series of

Bt up through T , Λt up through T , A, Q, and Φ, we: (1) draw innovations to coefficients

for periods T +1 through T +H from a normal distribution with variance-covariance matrix

Q and use the random walk structure to compute BT+1, . . . , BT+H ; (2) draw innovations to

log volatility for each variable i for periods T +1 through T +H from a normal distribution

with variance φi and use the random walk model of log λi,t+h to compute λi,T+1, . . . , λi,T+H ;

(3) draw innovations to yT+h, h = 1, . . . ,H, from a normal distribution with variance

ΣT+h = A−1ΛT+hA
−1′, and use the vector autoregressive structure of the model along with

the time series of coefficients BT+h to obtain draws of yT+h, h = 1, . . . ,H. The resulting

draws of yT+h are used to compute the forecast statistics of interest (RMSE based on the

posterior mean, etc.).
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Priors:

The prior for the initial values of the parameters Bt, B0 is normally distributed with

zero mean and unit variance. The prior for Q follows an inverted Wishart distribution:

Q ∼ IW (Q,µQ), (17)

where Q is diagonal matrix with diagonal elements equal to 0.035, and µQ is set to 1.

In the prior for the volatility-related components of the model, we use an approach to

setting them similar to that of such studies as Clark (2011), Cogley and Sargent (2005),

and Primiceri (2005). The prior for A is uninformative:

µ
a,i

= 0, Ωa,i = 10002 · Ii−1. (18)

In line with other studies such as Cogley and Sargent (2005), we make the priors on the

volatility-related parameters loosely informative. As for the Bt parameters, the prior on

each φi use a mean of 0.035 and 1 degrees of freedom. For the initial value of the volatility

of each equation i, we use

µ
λ,i

= log λ̂i,0,OLS , Ωλ = 4. (19)

To obtain log λ̂i,0,OLS , we use a training sample of observations preceding the estimation

sample to fit AR(4) models for each variable and, for each j = 2, . . . , n, we regress the

residual from the AR model for j on the residuals associated with variables 1 through j− 1

and compute the error variance (this step serves to filter out covariance as reflected in the

A matrix). Letting σ̂2
i,0 denote these error variances, we set the prior mean of log volatility

in period 0 at log λ̂i,0,OLS = log σ̂2
i,0. For simplicity, since some of the data vintages do not

start until 1959, we use the same prior mean on initial volatility for all vintages (forecast

origins). We compute that volatility value using the last available vintage of data, with a

training sample of 36 observations for the U.S. and 24 for the U.K.

6.3 VAR with Stochastic Volatility

We estimate the model with a four-step Metropolis-within-Gibbs MCMC algorithm.

Step 1: Draw the vector of VAR coefficients B conditional on the history of Λt, A, and

Φ.

The vector of coefficients is sampled from a multivariate normal posterior distribution

with mean µ̄B and variance Ω̄B, based on prior mean µ
B

and variance ΩB. Letting Σt =

24



A−1ΛtA
−1′, the posterior mean and variance are:

vec(µ̄B) = Ω̄B

{
vec

(
T∑
t=1

Xty
′
tΣ
−1
t

)
+ Ω−1

B vec(µ
B

)

}
(20)

Ω̄−1
B = Ω−1

B +

T∑
t=1

(Σ−1
t ⊗XtX

′
t). (21)

Step 2: Draw the elements of A conditional on B, the history of Λt, and Φ.

This step proceeds as with step 2 of the AR-TVP-SV algorithm, except that the VAR

coefficients are constant.

Step 3: Draw the elements of the variance matrix Λt conditional on B, A, and Φ.

This step proceeds as with step 3 of the AR-TVP-SV algorithm, except that the VAR

coefficients are constant.

Step 4: Draw the variances φi, i = 1, . . . , k, conditional on B, the history of Λt, A, and

Q.

This step proceeds as with step 5 of the AR-TVP-SV algorithm, except that the VAR

coefficients are constant.

Forecast density:

The simulation of the predictive density follows the steps described above for the VAR-

TVP-SV model, except that the steps for simulating time series of the VAR coefficients are

eliminated.

Variant with stationary volatility

To estimate the VAR-ARSV model, we modify the VAR-SV algorithm in two ways.

First, we need to make some small adjustments to the Metropolis step for sampling the

volatilities λi,t, to reflect a volatility process that is an AR(1) process rather than a random

walk. These adjustments affect the mean and standard deviation of the conditional distri-

butions used to sample volatility. The general equations are given in Jacquier, Polson, and

Rossi (1994). Second, we need to add a step to draw the AR coefficients of the volatility

process:

log(λi,t) = a0,i + a1,i log(λi,t−1) + νi,t, νi,t ∼ N(0, φi) ∀ i = 1, k.

This step uses a multivariate normal prior and posterior for the vector of coefficients for

each equation i, treating each equation independently.

Variant with fat tails

To estimate the VAR-SVt model, we modify some steps of the VAR-SV algorithm to

normalize innovations by q−0.5
i,t and add a step to draw the fat tails term. Step 1 (VAR
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coefficients) above is modified to use a reduced form variance matrix that takes the form

Σt = A−1QtΛtA
−1′. Step 2 (A coefficients) is modified to multiply equation i by q−0.5

i,t λ−0.5
i,t .

Step 3 (Λt) is modified to use q−0.5
i,t ỹi,t in lieu of ỹi,t. Finally, following Jacquier, Polson,

and Rossi (2004), we add a Step 5 to independently sample qi,t from an inverse Gamma

distribution using d degrees of freedom and a posterior scale term of (ỹ2
i,t/λi,t + d) [which

is exactly the same as using (ỹ2
i,t/λi,t + d)/χ2(d) for the sampling].

Priors

For the VAR-SV model, we use a conventional Minnesota prior, without cross-variable

shrinkage:

µ
B

such that E[B
(ij)
l ] = 0 ∀ i, j, l (22)

ΩB such that V [B
(ij)
l ] =

{
θ2

l2
σ2
i

σ2
j

for l > 0

ε2σ2
i for l = 0

(23)

Following common settings, we use θ = 0.2 and ε = 1000, and we set the scale parameters

σ2
i at estimates of residual variances from AR(4) models from the estimation sample. With

all of the variables of our VAR models transformed for stationarity (in particular, we use

growth rates of GDP, the price level, etc.), we set the prior mean of all the VAR coefficients

to 0.

For the priors on the volatility-related components of the model, we use the approach

detailed above for the VAR-TVP-SV. In the case of the model with stationary stochastic

volatility, we set the prior mean and standard deviation of each volatility equation’s intercept

at 0 and 0.4, respectively, and we set the prior mean of the AR(1) coefficient at either 0.5,

0.8, or 0.9, with a standard deviation of 0.05.

6.4 AR mixture of innovation models

The AR(p) mixture of innovations model, developed in studies such as Koop and Potter

(2007), Giordani, et al. (2007), and Groen, Paap, and Ravazzolo (2012), is specified as
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follows:

yt = b0,t +

p∑
i=1

bi,tyt−i + ut

ut = λ0.5
t εt, εt ∼ N(0, 1)

bj,t = bj,t−1 + κj,t nj,t, j = 0, . . . , p (24)

log(λt) = log(λt−1) + κp+1,t np+1,t

Pr[κj,t = 1] = πj , j = 0, . . . , p+ 1

var
(
(n0,t, . . . , np+1,t)

′) = diag(q0, q1, . . . , qp+1).

For posterior simulation we run the Gibbs sampler in combination with the data aug-

mentation technique by Tanner and Wong (1987). Defining the latent variables B =

{b0,t, ..., bp,t}Tt=1, R = {λt}Tt=1 ,, K = (Kb,Kλ), Kb = {κ0,t, ..., κp,t}Tt=1 and Kλ = {κp+1,t}Tt=1,

alongside the model parameters, θ ≡ (π0, ..., πp+1, q0, ..., qp+1)′, the sampling scheme consists

of the following iterative steps:

1. Draw Kb conditional on R,Kλ, θ, and r .

2. Draw B conditional on R,K, θ and r.

3. Draw Kλ conditional on B,Kb, θ, and r.

4. Draw R conditional on B,K, θ and r.

5. Draw θ conditional on B,K and r.

The first and third step applies the efficient sampling algorithm of Gerlach, Carter and

Kohn (2000). The second and fourth steps follows the forward-backward algorithm of Carter

and Kohn (1994).

The vector of parameters θ is easily sampled as we use conjugate priors. For the struc-

tural break probability parameters we take Beta distributions

πj ∼ Beta(aj , bj) for j = 0, . . . , p+ 1. (25)

The parameters aj and bj can be set according to our prior belief about the occurrence of

structural breaks. The expected prior probability of a break is aj/(aj +bj). We set aj = 0.8

and bj = 30 for j = 0, . . . , p and ap+1 = 0.5 and bp+1 = 2. For the variance parameters

which reflect our prior beliefs about the size of the structural breaks we take an inverted
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Gamma-2 prior that depends on scale parameter ω̄j and degrees of freedom parameter νj ,

that is,

q2
j ∼ IG-2(ω̄j , νj) for j = 0, . . . , k + 1, (26)

with ω̄j = ωjνj . The expected prior break size equals therefore the square root of (ωjνj)/(νj−

2) for νj > 2. We set ωj equal to OLS estimates of the variance of the autoregressive pa-

rameters and residual variance divided by 100.

6.5 GARCH models

We estimate the VAR model in equation (7) using a Metropolis-Hastings algorithm. Define

the vector αi = (B0, ..., BL, a0,i, a1,i, a2,i)
′
, with B(L) = (B0, ..., BL), i = 1, .., k, and αj the

j-th element of it. The sampling scheme consists of the following iterative steps.

Step 1: At iteration s, generate a point α∗j from the random walk kernel

α∗j = αi−1
j + εj , ε ∼ N(0, Q), (27)

where Q is a diagonal matrix and σ2
j is its j-th diagonal element, and αs−1

j is the (s− 1)th

iterate of αj . Therefore, we draw row elements of B0, ..., BL and a0,i, a1,i, a2,i independently

for each i = 1, .., k. Then accept α∗j as αsj with probability p = min
[
1, f(α∗j )/f(αs−1

j )
]
,

where f() is the likelihood of model (7) times priors. Otherwise, set α∗j = αs−1
j . The

elements of Q are tuned by monitoring the acceptance rate to lie between 25% and 50%.

Step 2: After M iterations, we apply the following independent kernel MH algorithm.

Generate α∗j from

α∗j = µi−1
αj

+ εj , ε ∼ N(0, Qαj ), (28)

where µαj and Qαj are, respectively, the sample mean and the sample covariance of the

first M iterates for αj . Then accept α∗j as αij with probability

p = min

[
1,
f(α∗j )g(αs−1

j )

f(αs−1
j )g(α∗j )

]
, (29)

where g() is a Gaussian proposal density (28). The non-diagonal elements of the variance

covariance matrix grouped in the matrix A are simulated as in Cogley and Sargent (2005),

as described in step 2 in section 6.3.

Priors

We set normal priors for B(L) with mean and variance equal to frequentist estimates.

The priors for a0,i, a1,i, a2,i are uniform distributed and satisfy the restrictions a0 > 0, a1 +

a2 < 1.
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6.6 Details of burn samples and thinning invervals

As noted in section 3, our results are based on samples of 5000 draws retained from a larger

number of draws, with the larger number of draws reflecting settings on burn samples and

thinning intervals meant to yield reasonable mixing of the MCMC chains associated with

each model.

Burn samples and thinning intervals

model burn thin interval total draws

AR 5000 5 30,000
AR-GARCH 2000 1 7,000
AR-SV 1000 20 101,000
AR-TVP-SV 1000 20 101,000
AR-mixture 2000 2 12,000
VAR 5000 5 30,000
VAR-GARCH 2000 1 7,000
VAR-SV 5000 8 45,000
VAR-ARSV 5000 5 30,000
VAR-SVt 5000 8 45,000
VAR-TVP-SV 1000 20 101,000
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Table 1. Real-Time Forecast RMSEs, U.S. Forecasts
(RMSEs for AR and BVAR benchmarks, RMSE ratios in all others)

GDP growth, 1985:Q1-2007:Q4 GDP growth, 1985:Q1-2011:Q2
h = 1Q h = 2Q h = 4Q h = 8Q h = 1Q h = 2Q h = 4Q h = 8Q

AR 0.440 0.454 0.475 0.475 0.518 0.558 0.583 0.587
VAR 0.517 0.550 0.511 0.456 0.675 0.747 0.711 0.593
AR-GARCH 1.007 1.011 1.013 1.042 0.998 1.011 1.010 1.032
AR-SV 1.016 1.013 1.017 1.029 1.010 1.002 1.007 1.020
AR-mixture 1.039 1.046 1.093 1.175 1.014 1.018 1.050 1.089
AR-TVP-SV 1.016 1.009 1.027 1.048 1.004 0.995 1.007 1.017
VAR-GARCH 1.054 1.022 1.094 1.055 1.049 1.040 1.094 1.027
VAR-SV 0.955 0.949 1.008 1.041 0.896 0.878 0.932 1.007
VAR-ARSV, a1=0.9 0.967 0.962 1.016 1.033 0.909 0.896 0.941 0.998
VAR-ARSV, a1=0.8 0.978 0.971 1.014 1.022 0.928 0.915 0.950 0.992
VAR-ARSV, a1=0.5 0.984 0.985 1.000 1.009 0.957 0.948 0.961 0.987
VAR-SVt, d=5 0.947 0.943 0.986 1.015 0.891 0.877 0.915 0.978
VAR-SVt, d=10 0.945 0.945 0.996 1.022 0.891 0.880 0.924 0.985
VAR-SVt, d=15 0.949 0.947 0.996 1.017 0.893 0.880 0.925 0.987
VAR-TVP-SV 0.977 0.953 1.084 1.048 0.996 0.926 1.038 0.987

Inflation, 1985:Q1-2007:Q4 Inflation, 1985:Q1-2011:Q2
h = 1Q h = 2Q h = 4Q h = 8Q h = 1Q h = 2Q h = 4Q h = 8Q

AR 0.252 0.265 0.281 0.355 0.266 0.272 0.298 0.367
VAR 0.254 0.281 0.302 0.386 0.269 0.284 0.318 0.400
AR-GARCH 0.996 0.992 0.986 0.972 0.992 0.989 0.983 0.967
AR-SV 0.972 0.981 0.940 0.910 0.977 0.978 0.940 0.907
AR-mixture 1.004 0.958 0.936 0.885 0.985 0.974 0.943 0.877
AR-TVP-SV 0.972 0.962 0.907 0.825 0.962 0.963 0.903 0.826
VAR-GARCH 1.102 0.957 0.980 0.909 1.074 0.968 0.981 0.920
VAR-SV 0.972 0.956 0.920 0.887 0.966 0.949 0.915 0.883
VAR-ARSV, a1=0.9 0.968 0.960 0.934 0.916 0.962 0.949 0.925 0.911
VAR-ARSV, a1=0.8 0.972 0.967 0.951 0.937 0.966 0.957 0.941 0.931
VAR-ARSV, a1=0.5 0.980 0.985 0.979 0.979 0.977 0.975 0.964 0.972
VAR-SVt, d=5 0.972 0.971 0.944 0.937 0.970 0.960 0.938 0.929
VAR-SVt, d=10 0.972 0.967 0.944 0.926 0.966 0.957 0.935 0.919
VAR-SVt, d=15 0.968 0.971 0.944 0.924 0.962 0.957 0.935 0.914
VAR-TVP-SV 1.083 1.046 0.868 0.824 1.071 1.077 0.984 0.882
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Table 1, continued. Real-Time Forecast RMSEs, U.S. Forecasts
(RMSEs for AR and BVAR benchmarks, RMSE ratios in all others)

Unemployment, 1985:Q1-2007:Q4 Unemployment, 1985:Q1-2011:Q2
h = 1Q h = 2Q h = 4Q h = 8Q h = 1Q h = 2Q h = 4Q h = 8Q

AR 0.164 0.292 0.548 0.914 0.222 0.403 0.814 1.354
VAR 0.161 0.291 0.541 0.747 0.240 0.483 1.003 1.503
AR-GARCH 1.018 1.010 0.987 0.952 1.005 0.968 0.986 0.995
AR-SV 0.982 0.986 0.971 0.982 0.995 0.995 0.978 0.984
AR-mixture 1.110 1.171 1.250 1.388 1.032 1.069 1.221 1.618
AR-TVP-SV 1.000 0.997 0.978 0.996 1.023 0.998 1.034 1.055
VAR-GARCH 1.037 1.058 1.039 1.043 1.004 1.019 1.041 1.031
VAR-SV 0.969 0.944 0.933 1.018 0.967 0.930 0.914 0.971
VAR-ARSV, a1=0.9 0.981 0.958 0.949 1.038 1.000 0.969 0.946 0.992
VAR-ARSV, a1=0.8 0.988 0.969 0.959 1.033 1.017 0.986 0.962 0.999
VAR-ARSV, a1=0.5 0.994 0.990 0.976 1.016 1.038 1.014 0.988 1.008
VAR-SVt, d=5 0.969 0.955 0.951 1.033 1.008 0.969 0.941 0.977
VAR-SVt, d=10 0.969 0.955 0.948 1.033 1.000 0.963 0.936 0.979
VAR-SVt, d=15 0.969 0.951 0.946 1.033 1.000 0.961 0.936 0.981
VAR-TVP-SV 1.081 1.052 1.044 1.313 1.108 1.039 0.967 1.068

Interest rate, 1985:Q1-2007:Q4 Interest rate, 1985:Q1-2011:Q2
h = 1Q h = 2Q h = 4Q h = 8Q h = 1Q h = 2Q h = 4Q h = 8Q

AR 0.475 0.869 1.373 2.036 0.469 0.873 1.435 2.227
VAR 0.452 0.795 1.258 1.839 0.454 0.810 1.330 2.012
AR-GARCH 0.823 0.867 0.887 0.907 0.832 0.860 0.889 0.919
AR-SV 0.977 0.967 0.995 0.992 0.977 0.964 0.990 0.980
AR-mixture 0.815 0.900 1.070 1.255 0.851 0.911 1.040 1.164
AR-TVP-SV 0.760 0.826 0.950 1.077 0.780 0.806 0.885 0.981
VAR-GARCH 0.909 0.990 0.955 0.990 0.923 0.993 0.963 0.985
VAR-SV 0.946 0.962 0.999 1.016 0.933 0.944 0.974 0.990
VAR-ARSV, a1=0.9 0.960 0.971 1.004 1.031 0.944 0.954 0.979 1.005
VAR-ARSV, a1=0.8 0.962 0.972 1.007 1.034 0.948 0.957 0.982 1.009
VAR-ARSV, a1=0.5 0.969 0.978 1.007 1.031 0.955 0.963 0.987 1.014
VAR-SVt, d=5 0.955 0.966 1.007 1.036 0.937 0.948 0.984 1.013
VAR-SVt, d=10 0.953 0.962 1.005 1.031 0.935 0.944 0.980 1.006
VAR-SVt, d=15 0.944 0.961 1.002 1.028 0.930 0.943 0.978 1.004
VAR-TVP-SV 0.810 0.960 1.156 1.476 0.815 0.916 1.050 1.322

Notes: 1. In each quarter t from 1985:Q1 through 2011:Q2, vintage t data (which end in t − 1) are used to form
forecasts for periods t through t+ 7, corresponding to horizons of 1 through 8 quarters ahead. The forecast errors are
calculated using the second-available (real–time) estimates of growth and inflation and currently available measures
of unemployment and the short-term interest rate as the actuals. All variables are defined in annualized percentage
points.
2. The models are detailed in section 3. The notation VAR-ARSV refers to a VAR model in which log volatility
follows an AR(1) process, with a tight prior on the slope coefficient a1. The notation VAR-SVt refers to a VAR model
with stochastic volatility and fat tails, in which d denotes the degrees of freedom of the Student-t distribution that
is the marginal distribution of innovations to the model. The forecasts are produced with recursive estimation of the
models.
3. For the baseline AR and VAR models with constant volatilities, the table reports the RMSEs (first two rows of
each panel). For the AR models with time-varying volatilities, the table reports the ratio of each model relative to
the RMSE of the AR baseline. For the VAR models with time-varying volatilities, the table reports the ratio of each
model relative to the RMSE of the VAR baseline. Entries less than 1 indicate that forecasts from the indicated model
are more accurate than forecasts from the associated baseline model.
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Table 2. Average log predictive scores, U.S. Forecasts
(Scores for AR and BVAR benchmarks, score differences in all others)

GDP growth, 1985:Q1-2007:Q4 GDP growth, 1985:Q1-2011:Q2
h = 1Q h = 2Q h = 4Q h = 8Q h = 1Q h = 2Q h = 4Q h = 8Q

AR -1.005 -1.038 -1.063 -1.060 -1.044 -1.093 -1.120 -1.119
VAR -0.996 -1.006 -1.012 -1.044 -1.118 -1.176 -1.163 -1.119
AR-GARCH 0.235 0.196 0.188 0.149 0.172 0.077 0.014 -0.068
AR-SV 0.268 0.251 0.252 0.225 0.200 0.142 0.096 0.004
AR-mixture 0.205 0.184 0.110 0.085 -0.066 -0.221 -0.314 -0.343
AR-TVP-SV 0.272 0.244 0.218 0.189 0.211 0.150 0.101 0.018
VAR-GARCH 0.088 0.005 -0.150 -0.207 0.080 -0.028 -0.149 -0.187
VAR-SV 0.222 0.187 0.202 0.214 0.193 0.133 0.090 0.060
VAR-ARSV, a1=0.9 0.171 0.135 0.090 0.020 0.187 0.150 0.092 0.004
VAR-ARSV, a1=0.8 0.112 0.081 0.034 -0.009 0.132 0.106 0.053 -0.010
VAR-ARSV, a1=0.5 0.034 0.011 -0.009 -0.009 0.057 0.036 0.018 0.000
VAR-SVt, d=5 0.182 0.157 0.166 0.165 0.175 0.147 0.127 0.058
VAR-SVt, d=10 0.213 0.187 0.194 0.204 0.190 0.146 0.118 0.077
VAR-SVt, d=15 0.218 0.183 0.207 0.215 0.199 0.137 0.124 0.070
VAR-TVP-SV 0.121 0.036 -0.116 -0.412 0.121 0.047 -0.094 -0.350

Inflation, 1985:Q1-2007:Q4 Inflation, 1985:Q1-2011:Q2
h = 1Q h = 2Q h = 4Q h = 8Q h = 1Q h = 2Q h = 4Q h = 8Q

AR -0.192 -0.267 -0.353 -0.521 -0.224 -0.267 -0.374 -0.531
VAR -0.200 -0.306 -0.411 -0.599 -0.235 -0.299 -0.428 -0.612
AR-GARCH 0.012 0.051 0.051 0.069 0.014 0.045 0.044 0.052
AR-SV 0.177 0.157 0.176 0.145 0.156 0.133 0.154 0.127
AR-mixture -0.154 -0.113 0.010 -0.296 -0.171 -0.176 -0.058 -0.268
AR-TVP-SV 0.192 0.195 0.223 0.172 0.177 0.165 0.199 0.163
VAR-GARCH -0.327 -0.300 -0.309 -0.314 -0.306 -0.311 -0.284 -0.294
VAR-SV 0.077 0.102 0.173 0.152 0.075 0.083 0.155 0.138
VAR-ARSV, a1=0.9 0.040 0.055 0.063 0.042 0.047 0.043 0.063 0.044
VAR-ARSV, a1=0.8 0.019 0.018 0.021 0.012 0.029 0.015 0.027 0.017
VAR-ARSV, a1=0.5 -0.029 -0.038 -0.045 -0.041 -0.012 -0.032 -0.031 -0.031
VAR-SVt, d=5 0.046 0.056 0.086 0.057 0.051 0.037 0.075 0.048
VAR-SVt, d=10 0.072 0.080 0.126 0.093 0.073 0.064 0.113 0.083
VAR-SVt, d=15 0.079 0.089 0.135 0.104 0.078 0.071 0.121 0.092
VAR-TVP-SV 0.059 0.019 -0.097 -0.412 0.056 -0.010 -0.124 -0.396
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Table 2, continued. Average log predictive scores, U.S. Forecasts
(Scores for AR and BVAR benchmarks, score differences in all others)

Unemployment, 1985:Q1-2007:Q4 Unemployment, 1985:Q1-2011:Q2
h = 1Q h = 2Q h = 4Q h = 8Q h = 1Q h = 2Q h = 4Q h = 8Q

AR 0.122 -0.423 -0.971 -1.388 -0.014 -0.581 -1.223 -1.707
VAR 0.177 -0.358 -0.876 -1.157 -0.034 -0.707 -1.535 -2.208
AR-GARCH 0.160 0.074 -0.032 -0.083 0.155 0.087 -0.031 -0.062
AR-SV 0.081 0.090 0.089 0.049 0.046 0.038 -0.008 -0.083
AR-mixture 0.121 0.084 -0.168 -0.704 -0.002 0.082 -0.065 -0.355
AR-TVP-SV -1.176 -1.340 -1.426 -1.508 -1.066 -1.192 -1.139 -1.023
VAR-GARCH -0.548 -0.510 -0.354 -0.247 -0.403 -0.257 0.002 -0.016
VAR-SV 0.187 0.189 0.104 -0.065 0.162 0.098 -0.182 -0.707
VAR-ARSV, a1=0.9 0.139 0.154 0.100 -0.041 0.157 0.160 0.034 -0.120
VAR-ARSV, a1=0.8 0.097 0.113 0.080 -0.029 0.119 0.128 0.056 -0.054
VAR-ARSV, a1=0.5 0.028 0.047 0.035 -0.023 0.052 0.058 -0.006 -0.080
VAR-SVt, d=5 0.104 0.134 0.075 -0.074 0.121 0.111 -0.092 -0.424
VAR-SVt, d=10 0.161 0.177 0.083 -0.091 0.172 0.143 -0.161 -0.656
VAR-SVt, d=15 0.172 0.184 0.088 -0.094 0.176 0.131 -0.189 -0.680
VAR-TVP-SV 0.035 -0.011 -0.177 -0.531 -0.003 -0.045 0.032 0.163

Interest rate, 1985:Q1-2007:Q4 Interest rate, 1985:Q1-2011:Q2
h = 1Q h = 2Q h = 4Q h = 8Q h = 1Q h = 2Q h = 4Q h = 8Q

AR -0.867 -1.348 -1.750 -2.144 -0.853 -1.339 -1.758 -2.151
VAR -0.837 -1.272 -1.680 -2.041 -0.832 -1.274 -1.692 -2.034
AR-GARCH 0.391 0.188 0.063 0.077 0.373 0.187 0.047 0.038
AR-SV 0.095 0.031 -0.049 -0.048 0.096 0.034 -0.075 -0.149
AR-mixture 0.278 0.042 -0.139 -0.323 0.161 -0.002 -0.104 -0.193
AR-TVP-SV 0.056 -0.146 -0.283 -0.324 0.029 -0.159 -0.238 -0.191
VAR-GARCH -0.018 -0.061 -0.074 -0.115 -0.042 -0.071 -0.059 -0.062
VAR-SV 0.316 0.088 -0.215 -0.261 0.284 0.043 -0.304 -0.403
VAR-ARSV, a1=0.9 0.313 0.157 -0.026 -0.077 0.287 0.128 -0.066 -0.109
VAR-ARSV, a1=0.8 0.287 0.156 -0.004 -0.062 0.267 0.135 -0.024 -0.069
VAR-ARSV, a1=0.5 0.234 0.135 0.014 -0.035 0.219 0.124 0.006 -0.036
VAR-SVt, d=5 0.217 0.062 -0.126 -0.156 0.199 0.035 -0.216 -0.249
VAR-SVt, d=10 0.256 0.068 -0.161 -0.186 0.235 0.034 -0.280 -0.327
VAR-SVt, d=15 0.261 0.064 -0.173 -0.190 0.239 0.026 -0.294 -0.312
VAR-TVP-SV 0.358 0.069 -0.201 -0.423 0.351 0.109 -0.114 -0.272

Notes: 1. In each quarter t from 1985:Q1 through 2011:Q2, vintage t data (which end in t − 1) are used to form
forecasts for periods t through t+ 7, corresponding to horizons of 1 through 8 quarters ahead. The forecast errors are
calculated using the second-available (real–time) estimates of growth and inflation and currently available measures
of unemployment and the short-term interest rate as the actuals. All variables are defined in annualized percentage
points.
2. The models are detailed in section 3. The notation VAR-ARSV refers to a VAR model in which log volatility
follows an AR(1) process, with a tight prior on the slope coefficient a1. The notation VAR-SVt refers to a VAR model
with stochastic volatility and fat tails, in which d denotes the degrees of freedom of the Student-t distribution that
is the marginal distribution of innovations to the model. The forecasts are produced with recursive estimation of the
models.
3. For the baseline AR and VAR models with constant volatilities, the table reports (in the first two rows of each
panel) the average values of log predictive density scores, computed with the Gaussian (quadratic) approximation
given in equation (12), defined so that a higher score implies a better model. For the AR models with time-varying
volatilities, the table reports the average score of each model less the average score of the AR baseline. For the
VAR models with time-varying volatilities, the table reports the average score of each model less the average score
of the VAR baseline. Entries greater than 0 indicate that forecasts from the indicated model are more accurate than
forecasts from the associated baseline model.
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Table 3. Average CRPS, U.S. Forecasts
(CRPS for AR and BVAR benchmarks, CRPS ratios in all others)

GDP growth, 1985:Q1-2007:Q4 GDP growth, 1985:Q1-2011:Q2
h = 1Q h = 2Q h = 4Q h = 8Q h = 1Q h = 2Q h = 4Q h = 8Q

AR 0.308 0.318 0.327 0.328 0.329 0.347 0.358 0.360
VAR 0.325 0.335 0.325 0.319 0.384 0.414 0.401 0.361
AR-GARCH 0.877 0.890 0.902 0.927 0.903 0.922 0.939 0.956
AR-SV 0.864 0.862 0.875 0.875 0.891 0.893 0.911 0.911
AR-mixture 0.867 0.862 0.924 0.982 0.906 0.902 0.964 0.989
AR-TVP-SV 0.864 0.865 0.890 0.899 0.888 0.893 0.919 0.919
VAR-GARCH 0.988 1.015 1.123 1.169 1.003 1.034 1.122 1.130
VAR-SV 0.886 0.885 0.901 0.906 0.864 0.856 0.890 0.927
VAR-ARSV, a1=0.9 0.898 0.901 0.929 0.935 0.875 0.873 0.908 0.941
VAR-ARSV, a1=0.8 0.921 0.920 0.949 0.955 0.899 0.898 0.928 0.955
VAR-ARSV, a1=0.5 0.952 0.950 0.965 0.965 0.939 0.935 0.951 0.960
VAR-SVt, d=5 0.883 0.882 0.888 0.894 0.859 0.859 0.874 0.907
VAR-SVt, d=10 0.883 0.882 0.891 0.887 0.862 0.856 0.882 0.904
VAR-SVt, d=15 0.879 0.882 0.888 0.884 0.859 0.859 0.879 0.904
VAR-TVP-SV 0.938 0.961 1.086 1.188 0.935 0.915 1.045 1.125

Inflation, 1985:Q1-2007:Q4 Inflation, 1985:Q1-2011:Q2
h = 1Q h = 2Q h = 4Q h = 8Q h = 1Q h = 2Q h = 4Q h = 8Q

AR 0.161 0.170 0.181 0.216 0.166 0.172 0.188 0.221
VAR 0.164 0.177 0.190 0.233 0.170 0.177 0.197 0.240
AR-GARCH 0.988 0.976 0.978 0.972 0.994 0.983 0.979 0.977
AR-SV 0.845 0.876 0.851 0.894 0.873 0.890 0.867 0.900
AR-mixture 0.913 0.876 0.851 0.903 0.928 0.913 0.883 0.905
AR-TVP-SV 0.845 0.841 0.807 0.806 0.861 0.860 0.824 0.814
VAR-GARCH 1.183 1.186 1.211 1.189 1.165 1.192 1.178 1.158
VAR-SV 0.959 0.937 0.884 0.884 0.954 0.944 0.895 0.887
VAR-ARSV, a1=0.9 0.959 0.950 0.919 0.920 0.961 0.950 0.917 0.918
VAR-ARSV, a1=0.8 0.959 0.962 0.948 0.938 0.961 0.963 0.945 0.939
VAR-ARSV, a1=0.5 0.979 1.000 1.000 0.991 0.980 0.988 0.989 0.987
VAR-SVt, d=5 0.959 0.956 0.919 0.938 0.954 0.957 0.923 0.939
VAR-SVt, d=10 0.959 0.956 0.908 0.924 0.954 0.950 0.912 0.926
VAR-SVt, d=15 0.945 0.950 0.908 0.920 0.948 0.950 0.912 0.922
VAR-TVP-SV 0.939 0.972 0.958 1.017 0.953 1.000 1.020 1.033
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Table 3, continued. Average CRPS, U.S. Forecasts
(CRPS for AR and BVAR benchmarks, CRPS ratios in all others)

Unemployment, 1985:Q1-2007:Q4 Unemployment, 1985:Q1-2011:Q2
h = 1Q h = 2Q h = 4Q h = 8Q h = 1Q h = 2Q h = 4Q h = 8Q

AR 0.104 0.184 0.331 0.538 0.126 0.219 0.418 0.702
VAR 0.101 0.177 0.319 0.435 0.130 0.243 0.490 0.726
AR-GARCH 0.942 0.951 0.985 0.980 0.952 0.959 0.998 0.994
AR-SV 0.952 0.940 0.946 0.976 0.976 0.963 0.962 0.986
AR-mixture 1.019 1.038 1.163 1.422 1.016 1.055 1.153 1.406
AR-TVP-SV 1.442 1.571 1.628 1.494 1.365 1.479 1.486 1.343
VAR-GARCH 1.505 1.401 1.216 1.124 1.323 1.230 1.118 1.070
VAR-SV 0.900 0.880 0.917 1.042 0.922 0.897 0.906 1.001
VAR-ARSV, a1=0.9 0.910 0.891 0.920 1.035 0.938 0.922 0.926 1.008
VAR-ARSV, a1=0.8 0.930 0.914 0.933 1.030 0.961 0.942 0.944 1.010
VAR-ARSV, a1=0.5 0.970 0.954 0.955 1.016 1.000 0.984 0.978 1.017
VAR-SVt, d=5 0.910 0.903 0.933 1.051 0.946 0.930 0.928 1.005
VAR-SVt, d=10 0.900 0.886 0.927 1.056 0.930 0.918 0.922 1.010
VAR-SVt, d=15 0.900 0.886 0.923 1.056 0.938 0.914 0.920 1.012
VAR-TVP-SV 1.040 1.045 1.113 1.430 1.038 1.025 1.004 1.185

Interest rate, 1985:Q1-2007:Q4 Interest rate, 1985:Q1-2011:Q2
h = 1Q h = 2Q h = 4Q h = 8Q h = 1Q h = 2Q h = 4Q h = 8Q

AR 0.288 0.498 0.775 1.162 0.283 0.497 0.800 1.245
VAR 0.276 0.459 0.718 1.059 0.277 0.465 0.748 1.127
AR-GARCH 0.747 0.839 0.885 0.916 0.756 0.839 0.894 0.929
AR-SV 0.934 0.960 1.000 1.006 0.936 0.960 1.002 1.005
AR-mixture 0.750 0.898 1.099 1.309 0.788 0.907 1.074 1.202
AR-TVP-SV 0.733 0.857 1.015 1.159 0.753 0.847 0.963 1.047
VAR-GARCH 0.986 1.013 0.997 1.033 1.000 1.019 0.999 1.013
VAR-SV 0.813 0.919 1.023 1.075 0.822 0.915 1.010 1.059
VAR-ARSV, a1=0.9 0.825 0.915 1.004 1.060 0.829 0.910 0.992 1.041
VAR-ARSV, a1=0.8 0.828 0.915 1.003 1.053 0.833 0.910 0.991 1.033
VAR-ARSV, a1=0.5 0.840 0.919 1.000 1.041 0.840 0.917 0.988 1.030
VAR-SVt, d=5 0.847 0.928 1.023 1.073 0.847 0.923 1.016 1.061
VAR-SVt, d=10 0.836 0.922 1.024 1.079 0.836 0.919 1.016 1.067
VAR-SVt, d=15 0.828 0.922 1.020 1.075 0.833 0.917 1.013 1.062
VAR-TVP-SV 0.746 0.937 1.150 1.450 0.751 0.892 1.047 1.300

Notes: 1. In each quarter t from 1985:Q1 through 2011:Q2, vintage t data (which end in t − 1) are used to form
forecasts for periods t through t+ 7, corresponding to horizons of 1 through 8 quarters ahead. The forecast errors are
calculated using the second-available (real–time) estimates of growth and inflation and currently available measures
of unemployment and the short-term interest rate as the actuals. All variables are defined in annualized percentage
points.
2. The models are detailed in section 3. The notation VAR-ARSV refers to a VAR model in which log volatility
follows an AR(1) process, with a tight prior on the slope coefficient a1. The notation VAR-SVt refers to a VAR model
with stochastic volatility and fat tails, in which d denotes the degrees of freedom of the Student-t distribution that
is the marginal distribution of innovations to the model. The forecasts are produced with recursive estimation of the
models.
3. For the baseline AR and VAR models with constant volatilities, the table reports (in the first two rows of each
panel) the average cumulative ranked probability score (CRPS), computed with formula given in equation (13), defined
so that a lower CPRS implies a better model. For the AR models with time-varying volatilities, the table reports
the ratio of the average CRPS of each model to the average CRPS of the AR baseline. For the VAR models with
time-varying volatilities, the table reports the ratio of the average CRPS of each model to the average CRPS of the
VAR baseline. Entries less than 1 indicate that forecasts from the indicated model are more accurate than forecasts
from the associated baseline model.
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Table 4. Real-Time Forecast RMSEs, U.K. Forecasts
(RMSEs for AR and BVAR benchmarks, RMSE ratios in all others)

GDP growth, 1985:Q1-2007:Q4 GDP growth, 1985:Q1-2010:Q4
h = 1Q h = 2Q h = 4Q h = 8Q h = 1Q h = 2Q h = 4Q h = 8Q

AR 0.461 0.454 0.421 0.357 0.591 0.605 0.629 0.601
VAR 0.483 0.424 0.361 0.373 0.685 0.624 0.617 0.609
AR-GARCH 1.028 1.035 1.002 0.964 1.078 1.074 1.022 1.005
AR-SV 1.011 1.095 1.074 1.022 0.992 1.073 1.051 1.043
AR-mixture 1.104 1.150 1.181 1.182 1.118 1.180 1.196 1.083
AR-TVP-SV 1.074 1.161 1.121 1.031 1.078 1.144 1.092 1.038
VAR-GARCH 1.050 1.222 1.377 1.206 0.953 1.064 1.139 1.171
VAR-SV 0.849 1.044 1.099 1.094 0.891 1.034 1.039 1.052
VAR-ARSV, a1=0.9 0.859 1.047 1.110 1.138 0.903 1.034 1.041 1.061
VAR-ARSV, a1=0.8 0.863 1.040 1.096 1.130 0.900 1.027 1.037 1.057
VAR-ARSV, a1=0.5 0.884 1.026 1.074 1.125 0.906 1.021 1.031 1.050
VAR-SVt, d=5 0.865 1.028 1.085 1.132 0.893 1.021 1.034 1.065
VAR-SVt, d=10 0.861 1.037 1.088 1.122 0.891 1.027 1.036 1.061
VAR-SVt, d=15 0.853 1.035 1.094 1.114 0.890 1.027 1.036 1.058
VAR-TVP-SV 1.021 1.210 1.277 1.147 0.889 1.122 1.104 1.064

Inflation, 1985:Q1-2007:Q4 Inflation, 1985:Q1-2010:Q4
h = 1Q h = 2Q h = 4Q h = 8Q h = 1Q h = 2Q h = 4Q h = 8Q

AR 0.530 0.545 0.630 0.747 0.552 0.566 0.630 0.745
VAR 0.630 0.748 0.954 1.278 0.665 0.777 0.973 1.224
AR-GARCH 1.002 1.022 1.030 1.091 1.005 1.018 1.027 1.075
AR-SV 1.028 1.028 0.998 0.916 1.011 1.011 1.000 0.914
AR-mixture 1.064 1.015 0.979 0.759 1.072 1.000 0.986 0.774
AR-TVP-SV 0.983 0.956 0.940 0.841 0.984 0.954 0.938 0.839
VAR-GARCH 0.948 1.048 0.865 0.660 0.896 0.960 0.841 0.778
VAR-SV 0.903 0.833 0.780 0.729 0.897 0.848 0.785 0.737
VAR-ARSV, a1=0.9 0.897 0.831 0.771 0.713 0.894 0.849 0.780 0.722
VAR-ARSV, a1=0.8 0.911 0.857 0.804 0.758 0.909 0.876 0.817 0.765
VAR-ARSV, a1=0.5 0.941 0.895 0.862 0.836 0.942 0.918 0.878 0.840
VAR-SVt, d=5 0.910 0.850 0.798 0.765 0.909 0.869 0.811 0.771
VAR-SVt, d=10 0.908 0.841 0.785 0.740 0.901 0.857 0.793 0.746
VAR-SVt, d=15 0.907 0.840 0.783 0.730 0.898 0.854 0.790 0.737
VAR-TVP-SV 1.041 0.941 0.895 0.765 1.029 0.983 0.991 0.830
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Table 4, continued. Real-Time Forecast RMSEs, U.K. Forecasts
(RMSEs for AR and BVAR benchmarks, RMSE ratios in all others)

Unemployment, 1985:Q1-2007:Q4 Unemployment, 1985:Q1-2010:Q4
h = 1Q h = 2Q h = 4Q h = 8Q h = 1Q h = 2Q h = 4Q h = 8Q

AR 0.183 0.321 0.676 1.459 0.201 0.359 0.745 1.400
VAR 0.158 0.250 0.431 0.623 0.181 0.310 0.579 0.900
AR-GARCH 1.060 1.047 0.975 0.936 1.030 1.025 0.977 0.958
AR-SV 0.978 0.975 0.964 0.922 0.980 0.983 0.970 0.942
AR-mixture 1.295 1.458 1.565 1.577 1.234 1.362 1.458 1.549
AR-TVP-SV 1.033 1.037 0.956 0.805 1.025 1.022 0.970 0.869
VAR-GARCH 1.342 1.700 2.246 3.072 1.227 1.361 1.368 1.408
VAR-SV 1.000 0.980 0.979 1.127 0.983 0.971 0.978 1.052
VAR-ARSV, a1=0.9 1.000 0.980 0.979 1.127 0.983 0.974 0.981 1.052
VAR-ARSV, a1=0.8 1.000 0.984 0.989 1.108 0.983 0.977 0.985 1.043
VAR-ARSV, a1=0.5 1.006 0.996 0.991 1.077 0.994 0.984 0.988 1.033
VAR-SVt, d=5 0.994 0.988 0.982 1.082 0.989 0.984 0.983 1.030
VAR-SVt, d=10 0.994 0.980 0.975 1.088 0.983 0.977 0.981 1.036
VAR-SVt, d=15 0.994 0.980 0.972 1.086 0.989 0.977 0.978 1.036
VAR-TVP-SV 1.044 1.124 1.290 1.703 1.061 1.113 1.223 1.376

Interest rate, 1985:Q1-2007:Q4 Interest rate, 1985:Q1-2010:Q4
h = 1Q h = 2Q h = 4Q h = 8Q h = 1Q h = 2Q h = 4Q h = 8Q

AR 0.759 1.337 2.385 3.708 0.794 1.393 2.442 3.766
VAR 0.679 1.225 2.192 3.750 0.706 1.259 2.200 3.670
AR-GARCH 0.768 0.844 0.849 0.834 0.793 0.863 0.858 0.836
AR-SV 0.839 0.835 0.770 0.713 0.854 0.851 0.790 0.737
AR-mixture 0.651 0.717 0.751 0.744 0.704 0.769 0.783 0.754
AR-TVP-SV 0.747 0.823 0.853 0.830 0.766 0.835 0.853 0.833
VAR-GARCH 0.941 1.028 0.983 0.873 1.154 0.992 0.954 1.079
VAR-SV 0.885 0.849 0.817 0.784 0.906 0.875 0.834 0.800
VAR-ARSV, a1=0.9 0.905 0.868 0.838 0.799 0.918 0.889 0.854 0.817
VAR-ARSV, a1=0.8 0.942 0.911 0.879 0.836 0.945 0.921 0.890 0.848
VAR-ARSV, a1=0.5 0.984 0.957 0.932 0.895 0.977 0.956 0.933 0.898
VAR-SVt, d=5 0.934 0.898 0.864 0.828 0.945 0.914 0.875 0.836
VAR-SVt, d=10 0.936 0.898 0.857 0.810 0.946 0.913 0.869 0.821
VAR-SVt, d=15 0.937 0.898 0.856 0.806 0.948 0.913 0.867 0.818
VAR-TVP-SV 0.853 0.831 0.785 0.754 0.931 0.952 0.912 0.785

Notes: 1. See the notes to Table 1.
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Table 5. Average log predictive scores, U.K. Forecasts
(Scores for AR and BVAR benchmarks, score differences in all others)

GDP growth, 1985:Q1-2007:Q4 GDP growth, 1985:Q1-2010:Q4
h = 1Q h = 2Q h = 4Q h = 8Q h = 1Q h = 2Q h = 4Q h = 8Q

AR -0.880 -0.885 -0.912 -0.911 -1.002 -1.030 -1.092 -1.090
VAR -0.837 -0.825 -0.823 -0.876 -1.077 -1.041 -1.076 -1.083
AR-GARCH 0.369 0.333 0.275 0.167 -0.366 -1.193 -1.996 -1.793
AR-SV 0.403 0.299 0.360 0.272 0.240 -0.242 -1.883 -2.871
AR-mixture -0.025 0.018 0.203 0.500 -1.982 -3.174 -3.973 -2.445
AR-TVP-SV 0.229 0.227 0.328 0.261 -0.349 -1.013 -2.440 -2.001
VAR-GARCH 0.160 0.197 -0.029 -0.068 -0.384 -0.740 -1.106 -1.193
VAR-SV 0.483 0.345 0.347 0.222 0.362 -0.135 -1.187 -1.147
VAR-ARSV, a1=0.9 0.423 0.302 0.210 0.049 0.401 0.111 -0.304 -0.199
VAR-ARSV, a1=0.8 0.345 0.223 0.133 0.018 0.367 0.134 -0.158 -0.087
VAR-ARSV, a1=0.5 0.203 0.105 0.036 -0.007 0.261 0.077 -0.041 -0.048
VAR-SVt, d=5 0.460 0.341 0.330 0.219 0.325 -0.086 -0.759 -0.813
VAR-SVt, d=10 0.475 0.358 0.347 0.229 0.340 -0.149 -1.082 -1.186
VAR-SVt, d=15 0.470 0.348 0.349 0.255 0.337 -0.152 -1.131 -1.076
VAR-TVP-SV 0.363 0.235 0.161 -0.074 0.375 -0.102 -0.579 -0.461

Inflation, 1985:Q1-2007:Q4 Inflation, 1985:Q1-2010:Q4
h = 1Q h = 2Q h = 4Q h = 8Q h = 1Q h = 2Q h = 4Q h = 8Q

AR -0.953 -0.991 -1.112 -1.263 -0.968 -1.003 -1.108 -1.254
VAR -0.993 -1.146 -1.360 -1.727 -1.022 -1.170 -1.377 -1.664
AR-GARCH 0.179 0.129 0.050 -0.095 0.151 0.112 0.040 -0.077
AR-SV 0.216 0.172 0.209 0.232 0.169 0.154 0.176 0.225
AR-mixture 0.163 0.279 0.355 0.331 0.062 0.195 0.297 0.288
AR-TVP-SV 0.234 0.258 0.210 0.187 0.199 0.216 0.199 0.196
VAR-GARCH 0.242 0.298 0.307 0.210 0.178 0.160 0.368 0.282
VAR-SV 0.179 0.263 0.324 0.483 0.187 0.247 0.296 0.439
VAR-ARSV, a1=0.9 0.149 0.220 0.285 0.446 0.154 0.207 0.265 0.407
VAR-ARSV, a1=0.8 0.099 0.154 0.217 0.366 0.105 0.145 0.202 0.333
VAR-ARSV, a1=0.5 0.017 0.071 0.128 0.254 0.023 0.062 0.116 0.227
VAR-SVt, d=5 0.131 0.200 0.268 0.411 0.138 0.178 0.231 0.381
VAR-SVt, d=10 0.169 0.232 0.301 0.452 0.173 0.214 0.267 0.416
VAR-SVt, d=15 0.175 0.241 0.311 0.465 0.181 0.225 0.281 0.426
VAR-TVP-SV 0.095 0.160 0.170 0.207 0.090 0.138 0.123 0.170
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Table 5, continued. Average log predictive scores, U.K. Forecasts
(Scores for AR and BVAR benchmarks, score differences in all others)

Unemployment, 1985:Q1-2007:Q4 Unemployment, 1985:Q1-2010:Q4
h = 1Q h = 2Q h = 4Q h = 8Q h = 1Q h = 2Q h = 4Q h = 8Q

AR 0.273 -0.304 -1.061 -1.871 0.166 -0.445 -1.180 -1.717
VAR 0.403 -0.056 -0.595 -1.042 0.268 -0.290 -0.960 -1.374
AR-GARCH -0.675 -0.971 -1.235 -1.472 -0.567 -0.787 -0.987 -1.249
AR-SV 0.015 0.029 0.035 0.093 0.027 0.023 0.019 0.048
AR-mixture -0.299 -0.248 -0.379 -0.906 -0.301 -0.238 -0.331 -0.792
AR-TVP-SV -0.054 -0.035 0.016 0.153 -0.047 -0.011 0.038 0.088
VAR-GARCH -0.916 -0.669 -1.806 -2.075 -0.674 -1.327 -1.294 -1.375
VAR-SV -0.016 0.004 -0.009 -0.088 -0.005 -0.033 -0.208 -0.360
VAR-ARSV, a1=0.9 -0.047 -0.037 -0.050 -0.137 -0.012 -0.023 -0.134 -0.191
VAR-ARSV, a1=0.8 -0.044 -0.038 -0.049 -0.124 -0.005 0.002 -0.047 -0.085
VAR-ARSV, a1=0.5 -0.061 -0.064 -0.074 -0.134 -0.012 0.008 0.013 -0.024
VAR-SVt, d=5 -0.029 -0.021 -0.043 -0.114 0.001 -0.024 -0.192 -0.358
VAR-SVt, d=10 -0.012 0.001 -0.013 -0.089 0.011 -0.028 -0.236 -0.401
VAR-SVt, d=15 -0.019 -0.002 -0.013 -0.092 0.004 -0.026 -0.230 -0.417
VAR-TVP-SV -0.036 -0.089 -0.255 -0.518 -0.051 -0.099 -0.346 -0.596

Interest rate, 1985:Q1-2007:Q4 Interest rate, 1985:Q1-2010:Q4
h = 1Q h = 2Q h = 4Q h = 8Q h = 1Q h = 2Q h = 4Q h = 8Q

AR -1.204 -1.706 -2.349 -3.192 -1.236 -1.747 -2.346 -3.016
VAR -1.122 -1.616 -2.265 -3.187 -1.147 -1.639 -2.224 -2.939
AR-GARCH 0.388 0.258 0.333 0.607 -0.261 -0.362 -0.107 0.239
AR-SV 0.449 0.301 0.387 0.813 -0.102 -0.570 -0.582 -0.659
AR-mixture 0.661 0.502 0.479 0.761 -0.909 -0.868 -0.234 0.366
AR-TVP-SV 0.532 0.316 0.402 0.671 -0.095 -0.293 -0.143 -0.229
VAR-GARCH 0.258 0.106 0.172 0.231 -0.795 -0.803 -0.237 0.419
VAR-SV 0.367 0.267 0.278 0.545 0.158 -0.034 -0.079 0.002
VAR-ARSV, a1=0.9 0.246 0.176 0.271 0.735 0.178 0.068 0.126 0.497
VAR-ARSV, a1=0.8 0.182 0.145 0.233 0.600 0.148 0.082 0.164 0.478
VAR-ARSV, a1=0.5 0.068 0.070 0.151 0.429 0.065 0.055 0.135 0.388
VAR-SVt, d=5 0.304 0.262 0.306 0.614 0.098 -0.035 0.018 0.206
VAR-SVt, d=10 0.345 0.270 0.281 0.570 0.107 -0.070 -0.084 0.068
VAR-SVt, d=15 0.345 0.268 0.279 0.547 0.099 -0.078 -0.088 0.017
VAR-TVP-SV 0.297 0.230 0.335 0.703 0.132 0.069 0.163 0.512

Notes: 1. See the notes to Table 2.
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Table 6. Average CRPS, U.K. Forecasts
(CRPS for AR and BVAR benchmarks, CRPS ratios in all others)

GDP growth, 1985:Q1-2007:Q4 GDP growth, 1985:Q1-2010:Q4
h = 1Q h = 2Q h = 4Q h = 8Q h = 1Q h = 2Q h = 4Q h = 8Q

AR 0.278 0.279 0.279 0.265 0.326 0.332 0.347 0.337
VAR 0.281 0.262 0.253 0.264 0.356 0.333 0.337 0.339
AR-GARCH 0.853 0.864 0.853 0.857 0.969 0.988 0.965 0.973
AR-SV 0.770 0.860 0.842 0.762 0.844 0.952 0.960 0.923
AR-mixture 0.942 0.961 0.975 0.826 1.077 1.139 1.133 0.970
AR-TVP-SV 0.874 0.925 0.889 0.770 0.972 1.039 1.014 0.923
VAR-GARCH 1.078 1.164 1.364 1.163 1.025 1.210 1.412 1.301
VAR-SV 0.726 0.823 0.855 0.880 0.806 0.923 0.950 0.971
VAR-ARSV, a1=0.9 0.740 0.853 0.887 0.931 0.808 0.929 0.962 0.986
VAR-ARSV, a1=0.8 0.757 0.865 0.895 0.942 0.814 0.932 0.959 0.986
VAR-ARSV, a1=0.5 0.806 0.891 0.918 0.964 0.842 0.943 0.971 0.991
VAR-SVt, d=5 0.740 0.827 0.848 0.909 0.811 0.914 0.944 0.991
VAR-SVt, d=10 0.733 0.827 0.844 0.894 0.808 0.920 0.944 0.986
VAR-SVt, d=15 0.726 0.823 0.855 0.898 0.803 0.920 0.947 0.986
VAR-TVP-SV 0.843 0.996 0.996 1.030 0.840 1.045 1.036 1.050

Inflation, 1985:Q1-2007:Q4 Inflation, 1985:Q1-2010:Q4
h = 1Q h = 2Q h = 4Q h = 8Q h = 1Q h = 2Q h = 4Q h = 8Q

AR 0.313 0.322 0.370 0.441 0.323 0.331 0.370 0.439
VAR 0.358 0.425 0.552 0.773 0.374 0.438 0.560 0.731
AR-GARCH 0.914 0.938 0.976 1.059 0.932 0.952 0.981 1.050
AR-SV 0.917 0.932 0.930 0.871 0.926 0.937 0.938 0.872
AR-mixture 0.955 0.882 0.816 0.669 0.978 0.894 0.846 0.695
AR-TVP-SV 0.875 0.863 0.854 0.794 0.892 0.879 0.862 0.795
VAR-GARCH 0.832 0.852 0.705 0.542 1.016 0.826 0.713 0.669
VAR-SV 0.860 0.791 0.748 0.686 0.856 0.808 0.759 0.699
VAR-ARSV, a1=0.9 0.860 0.795 0.742 0.663 0.859 0.812 0.756 0.677
VAR-ARSV, a1=0.8 0.887 0.828 0.780 0.716 0.883 0.846 0.793 0.727
VAR-ARSV, a1=0.5 0.939 0.880 0.851 0.804 0.936 0.898 0.865 0.812
VAR-SVt, d=5 0.871 0.814 0.774 0.723 0.872 0.835 0.791 0.734
VAR-SVt, d=10 0.862 0.800 0.758 0.698 0.859 0.817 0.772 0.709
VAR-SVt, d=15 0.862 0.798 0.757 0.686 0.859 0.814 0.770 0.697
VAR-TVP-SV 0.953 0.864 0.824 0.745 0.955 0.902 0.896 0.792
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Table 6, continued. Average CRPS, U.K. Forecasts
(CRPS for AR and BVAR benchmarks, CRPS ratios in all others)

Unemployment, 1985:Q1-2007:Q4 Unemployment, 1985:Q1-2010:Q4
h = 1Q h = 2Q h = 4Q h = 8Q h = 1Q h = 2Q h = 4Q h = 8Q

AR 0.103 0.183 0.392 0.882 0.115 0.203 0.423 0.810
VAR 0.088 0.142 0.247 0.368 0.101 0.171 0.306 0.475
AR-GARCH 1.252 1.448 1.630 1.137 1.183 1.345 1.499 2.164
AR-SV 0.981 0.973 0.954 0.916 0.974 0.980 0.960 0.937
AR-mixture 1.291 1.317 1.347 1.364 1.226 1.261 1.307 1.378
AR-TVP-SV 1.029 1.022 0.934 0.768 1.017 1.015 0.946 0.827
VAR-GARCH 2.045 1.894 2.591 4.712 1.970 1.205 2.232 3.469
VAR-SV 1.000 0.979 0.984 1.121 0.990 0.977 0.984 1.089
VAR-ARSV, a1=0.9 1.000 0.986 0.980 1.139 0.990 0.983 0.981 1.089
VAR-ARSV, a1=0.8 1.011 0.993 0.988 1.118 0.990 0.977 0.981 1.069
VAR-ARSV, a1=0.5 1.011 1.000 1.000 1.102 1.000 0.988 0.988 1.056
VAR-SVt, d=5 0.989 0.979 0.984 1.102 0.990 0.977 0.984 1.073
VAR-SVt, d=10 0.989 0.972 0.976 1.099 0.980 0.971 0.981 1.077
VAR-SVt, d=15 0.989 0.979 0.976 1.097 0.990 0.977 0.981 1.075
VAR-TVP-SV 1.045 1.106 1.263 1.704 1.059 1.105 1.252 1.482

Interest rate, 1985:Q1-2007:Q4 Interest rate, 1985:Q1-2010:Q4
h = 1Q h = 2Q h = 4Q h = 8Q h = 1Q h = 2Q h = 4Q h = 8Q

AR 0.419 0.728 1.349 2.329 0.429 0.745 1.370 2.292
VAR 0.381 0.669 1.258 2.387 0.393 0.684 1.247 2.244
AR-GARCH 0.728 0.804 0.799 0.766 0.751 0.836 0.833 0.804
AR-SV 0.740 0.762 0.718 0.630 0.760 0.796 0.765 0.688
AR-mixture 0.554 0.643 0.685 0.615 0.597 0.702 0.740 0.668
AR-TVP-SV 0.649 0.740 0.775 0.735 0.669 0.770 0.812 0.774
VAR-GARCH 0.976 0.868 0.828 0.796 1.176 1.104 1.135 0.820
VAR-SV 0.775 0.791 0.773 0.721 0.810 0.834 0.813 0.765
VAR-ARSV, a1=0.9 0.808 0.820 0.802 0.726 0.833 0.852 0.835 0.765
VAR-ARSV, a1=0.8 0.850 0.864 0.840 0.771 0.866 0.886 0.864 0.797
VAR-ARSV, a1=0.5 0.915 0.930 0.903 0.846 0.914 0.936 0.912 0.856
VAR-SVt, d=5 0.819 0.832 0.820 0.766 0.846 0.862 0.849 0.798
VAR-SVt, d=10 0.811 0.830 0.815 0.754 0.841 0.862 0.848 0.790
VAR-SVt, d=15 0.816 0.829 0.812 0.748 0.843 0.863 0.845 0.787
VAR-TVP-SV 0.819 0.815 0.743 0.664 0.878 0.917 0.851 0.705

Notes: 1. See the notes to Table 3.
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