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Abstract

Prompt Corrective Action (PCA) is a system of predetermined capital/asset ratios

that trigger supervisory actions by a banking regulator. Our paper addresses the

optimality of this regulation system by adapting a dynamic model of entrepreneurial

finance to banking regulation. In a dynamic moral hazard setting, we first derive the

optimal contract between the banker and the regulator and then implement it by a

menu of regulatory tools. Our main findings are the following: first, the insurance

premium is a risk-based premium where the risk is measured by the capital level;

second, our model implies a capital regulation system that shares several similarities

with the US PCA. According to our proposed system, regulatory supervision should

be realized in the spirit of gradual intervention and the book-value of capital is used

as information to trigger intervention. Banks with high capital are not subject to any

restrictions. Dividend distribution is prohibited in banks with intermediate level of

capital. When banks have low capital level, a plan of recapitalization is required and

in the worst case, banks are placed in liquidation.

Key words: Prompt Corrective Action, Capital Regulation, Dynamic Contract-
ing, Recapitalization.

JEL Codes: D82, G21, G28

1 Introduction

Following the implementation of the first Basel Accord (1988), academic research has

spent a lot of effort in assessing the effects of minimum capital requirement on excessive
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risk taking incentives. A conclusion derived from these works is that imposing minimum

regulatory capital requirements itself does not constitute an adequate solution for reducing

excessive risk taking, particularly in today’s world where financial innovation has produced

new markets and instruments that make it easy for banks and their employees to make

huge bets easily and quickly. This thinking drives the Basel Committee to incorporate in

Basel Accord II the pillar 2 - supervisory review - and the pillar 3 - market discipline -

as complementary to the pillar 1 - minimum capital requirement. The Basel Committee

states that the goal of the pillar 2 is to enable early supervisory intervention if the capital

does not provide a suffi cient buffer against risk. However, it remains silent on the way to

implement this principle in practice, or in other words, it remains silent on the threshold

and forms of intervention.

In the United State (US), a system of predetermined capital/asset ratios that trigger

structured actions by supervisor, which is called as Prompt Corrective Action (PCA), was

introduced in the 1991 Federal Deposit Insurance Corporation Improvement Act (FDI-

CIA). PCA classifies banks in five categories depending on their capital ratios: well cap-

italized, adequately capitalized, undercapitalized, significantly undercapitalized and crit-

ically undercapitalized. Imposition of regulatory restraints on banks becomes more and

more severe the lower their capital ratios. For instance, well capitalized and adequately

capitalized banks face no restrictions. Undercapitalized banks don’t have right to capital

distribution (dividend or stock repurchase). Significantly undercapitalized banks must

submit a recapitalization plan. Critically undercapitalized banks have to be placed in

receivership within 90 days. Some positive observed effects of FDICIA in creating the

appropriate incentives for banks, for deposit insurer and for prudential supervisor result

in the increasing number of recommendations to introduce PCA - type provisions in other

countries. Over the past years, Japan, Korea and Mexico have adopted a similar system of

the US PCA. Recently, the European Shadow Financial Regulatory Committee (ESFRC)

made a proposal aimed at dealing with problem banks. One of the recommendations in

their proposal is to implement a PCA regime in each individual Member State. In such

circumstances, a rigorous study of the optimality of PCA-type regulation seems timely

and relevant.

Our paper will address this issue by adapting a standard dynamic model of entre-

preneurial finance to banking regulation. We consider an infinitely repeated relationship

between a banker and a Deposit Insurance Corporation (DIC). The banker runs a bank

whose cumulative cashflows are assumed to follow an arithmetic Brownian motion process.

The drift of this process depends on the banker’s effort which is costly for the banker and

unobservable to the DIC. As provider of deposit insurance service, the latter does super-

vise the former on behalf of depositors. The regulatory rules are specified in the contract

to which both parties fully commit ex-ante. We assume that to provide the banker with

appropriate incentives, the DIC can control her compensations, require her to inject more

capital into the bank or force her to liquidate it. Hence, in our paper, we account for the

possibility that the bank is recapitalized during its operation if necessary. The banker has

to bear a positive cost for each additional unit of capital injected into the bank. Moreover,

there exists some exogenous bound for the amount of capital per unit of time the banker
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can contribute. This bound may be justified by some exogenous borrowing constraints

due to the imperfections of capital market.

In such a framework, to derive insights about an optimal regulation system, this paper

proceeds as follows: we first characterize the optimal contract between the banker and the

DIC. The method we use to solve for the optimal contract is the dynamic programming

technique. Specifically, we use the banker’s continuation utility as a single state vari-

able and the optimal contract will be contingent on it. In continuous-time, the incentive

compatibility condition is determined by the volatility of the banker’s continuation utility

process. The DIC’s payoff is specified through some ordinary differential equations. Af-

ter the characterization, we construct a regulatory menu that can implement the optimal

contract. Our menu consists of three instruments: bank chartering, capital regulation

and deposit insurance premium. Bank chartering determines the condition to set up a

bank. Deposit insurance premium defines the payments paid to the DIC at every time.

Capital regulation is characterized by the regulatory restrictions on dividend distribution,

recapitalization plan and liquidation. We find that first, the insurance premium is a risk-

based premium where the risk is measured by the amount of capital. Second, the capital

regulation derived from our model shares several similarities with the US PCA. According

to our capital regulation, regulatory supervision should be realized in the spirit of gradual

intervention and the book-value of capital is used as information to trigger intervention.

Banks with high capital are not subject to any restrictions. Dividend distribution is pro-

hibited in banks with intermediate level of capital. When banks have low capital level, a

plan of recapitalization is required and in the worst case, banks are placed in liquidation.

Recently, there is a growing litterature analyzing dynamic moral hazard model. It typ-

ically consists of DeMarzo and Fishman (2007a, 2007b); DeMarzo and Sannikov (2006);

Sannikov (2008); Biais, Mariotti, Plantin and Rochet (2007) (BMPR (2007)); Biais, Mari-

otti, Rochet and Villeneuve (2007) (BMRV(2007)) and DeMarzo and Sannikov (2007). In

general, these papers study the long-term financial contract in a setting in which a risk

neutral entrepreneur seeks funding from risk neutral investors to finance a project that

pays stochastic cashflows over many periods. Their contracting relationship is subject to

moral hazard problem which comes either from the unobservability of cashflows or from

the hidden efforts. The entrepreneur is liable for payments to the investors only to the

extent of current revenues. In addition to some variations in modelling, these papers

propose different methods to implement the optimal contract and so, generate different

insights. For example, to get implications for an optimal capital structure, DeMarzo and

Sannikov (2006) consider to implement the optimal contract by a combination of equity,

long-term debt and credit line. Having the same objective but BMPR (2007) study an

implementation which is realized via debt, equity and cash reserves. By implementing

the optimal contract through the firm’s payout policy, DeMarzo and Sannikov (2007) pro-

vides an explanation for the smoothness of corporate dividends relative to earnings and

cashflows.

Our paper is also based on a dynamic moral hazard model. However, compared to

the above papers, we relax the limited liability of the agent (the banker) and so, allow

the principal (the DIC) to require the banker to inject money during their relationship.
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Moreover, in this paper, we consider the implementation through a menu of regulatory

instruments available in practice of banking regulation. Therefore, we are able to discuss

the issue of optimality of PCA-type regulation.

The literature on PCA is mainly empirical. Since the introduction of the US PCA, there

have been several attempts to assess its functioning. Some papers recognized significant

impacts of PCA in terms of raising capital ratios and reducing risk for banks. Nevertheless,

Barth et al. (2004) in a study of bank regulation and supervision in 107 countries raise

doubts about government policies that rely excessively on direct government regulation

and supervision of banks. For the theoretical analysis of PCA, we can mention Shim

(2006), Freixas and Parigi (2007). The most relevant for our work is Shim (2006). Our

paper takes the same approach as that paper, i.e., applying the dynamic moral hazard

model of entrepreneurial finance to banking regulation. However, while Shim (2006) uses

the discrete - time model and does not account for the possibility of recapitalization by

the banker, in our paper, we formulate the problem in continuous - time and take into

consideration the costly recapitalization option.

The rest of paper is organized as follows. In section 2, we briefly describe the current

system of Prompt Corrective Action applied in the US. In section 3, we present the model

in a continuous - time setting. Section 4 is devoted to the characterization of the opti-

mal contract. Section 5 shows how this optimal contract is implemented by regulatory

instruments. Finally, section 6 concludes.

2 Description of the US PCA

Prompt Corrective Action (PCA) is part of package of measures adopted in the Federal

Deposit Insurance Corporation Improvement Act (FDICIA) which was enacted in 1991

after the US banking and thrift breakdowns of the 1980s. It is a version of the Benston and

Kaufman’s (1988) proposal for structured early intervention and resolution (SEIR). PCA

creates five categories for banks: well capitalized, adequately capitalized, undercapitalized,

significantly undercapitalized and critically undercapitalized. Bank classification into these

categories depends on three different capital ratios: (1) the total risk-based capital ratio;

(2) the Tier 1 risk-based capital ratio and (3) the Tier 1 leverage ratio, as shown in the

following table1

1Source: Table 1 in Aggarwal and Jacques (2001)
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Total risk-based Tier 1 risk-based Tier 1 leverage

capital2(%) ratio3(%) ratio4(%)

Well capitalized ≥ 10 ≥ 6 ≥ 5

Adequately capitalized ≥ 8 ≥ 4 ≥ 4

Undercapitalized < 8 < 4 < 4

Significantly undercapitalized < 6 < 3 < 3

Critically undercapitalized Tangible equity5≥ 2

Some mix of mandatory and discretionary restrictions is prescribed for banks in each

category. Mandatory restrictions become increasingly severe as the bank’s capital ratios

decrease. For example, no bank may make capital distribution if it belongs to any of the

three undercapitalized categories. Significantly undercapitalized banks are subject to a

multitude of constraints such as required capital restoration; restrictions on transactions

with affi liates and affi liated banks, on asset growth... For critically undercapitalized banks,

they face not only more stringent restrictions on activities but also the appointment of a

conservator (receiver) within 90 days.

The FDICIA requires each appropriate federal banking agency to take prompt correc-

tive actions to resolve the problems of insured depository institutions at the least possible

long - term loss to the deposit insurance fund. To increase the accountability of the regula-

tors in carrying out their delegated responsibilities, the Offi ce of the Inspector General at

the relevant agencies is required to file audit reports in cases that generate material losses

to the deposit insurance fund. These reports review the timeliness and cost effectiveness

of corrective actions taken.

As noted by Benston and Kaufman (1997), the system of predetermined capital/asset

ratios that trigger actions by the regulatory authorities serves two purposes. One is to

give banks an incentive to strive for high capital levels. The second purpose is to place

limits on the discretion of regulators.

3 Model

We consider here a repeated relationship between a risk-neutral banker who wants to

operate a bank and the risk-neutral Deposit Insurance Corporation (DIC) who is in charge

of insuring the deposits and supervising the bank.

More specifically, at the initial time, the banker has some endowment of cash. If she

transfers an amount E0 to the DIC, she can set up a bank, collects D units of deposits

and invests them in a long-term risky loan portfolio. The cumulated cashflows R =

2Total capital is the sum of Tier 1 and Tier 2 capital. Tier 1 mainly comprises permanent shareholders’
equity, i.e. common stock and disclosed reserves or retained earnings. Tier 2 comprises loan loss reserves,
subordinated debts, asset revaluation reserves, hybrid capital instruments, etc. Total risk-based capital
ratio is the ratio of total capital to risk-weighted assets.

3Tier 1 risk-based ratio is the ratio of Tier 1 capital to risk-weighted assets.
4Tier 1 leverage ratio is the ratio of Tier 1 capital to total assets.
5The tangible equity ratio equals the total of Tier 1 capital plus cumulative preferred stock and related

surplus less intangibles except qualifying purchased mortgage servicing rights divided by the total of bank
assets less intangible assets except qualifying purchased mortgage servicing rights.
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{Rt, 0 ≤ t <∞} of this portfolio evolve according to the following diffusion process6

dRt = µAtdt+ σdZAt

where µ > 0 and σ are constants; At denotes the effort level of the banker at time t

and ZA =
{
ZAt ,Ft, 0 ≤ t <∞

}
is a standard Brownian motion defined on the measurable

space (Ω,F) equipped with a probability measure PA induced by the effort process A =

{At, 0 ≤ t <∞}. For simplicity, we assume that the set of feasible effort levels contains
two elements {0, 1} . Effort is costly for the banker in the sense that she enjoys a private
benefit B if exerting low effort (At = 0). Denote by v(At) the banker’s private benefits

associated with effort level At. Hence, v(0) = B and v(1) = 0. We assume that B < µ,

i.e., exerting high effort is effi cient.

The relationship between the banker and the DIC is subject to a moral hazard prob-

lem which comes from the unobservability of the banker’s effort. That means, whereas

the cashflows process R = {Rt, 0 ≤ t <∞} is publicly observable by both the DIC and
the banker, the effort level At is private information of the latter. A contract between

the banker and the DIC specifies, based on the entire history of cashflow realizations, a

liquidation time τ (Rs, 0 ≤ s < τ) and the payments for the banker at each time before

the liquidation time. Denote by C = {Ct (Rs, 0 ≤ s ≤ t) , 0 ≤ t < τ} the process describing
the cumulative payments to the banker. At any time, the bank can also be closed if the

banker decides not to run the bank any more and switches to her second-best business

which gives her an expected utility W̃ ∈
[
0, µρ

)
7 where ρ is the discount rate of the banker.

The value of the loan portfolio at the time of termination is assumed to be zero.

We here assume that the DIC possesses an option of requiring the banker to contribute

capital into the bank during its operation. The introduction of this option constitutes our

major novelty compared to Shim (2006). The supplementary capital contributed serves to

reinforce the bank’s balance sheet in order to avoid default. It is interpreted as recapital-

ization and is modeled in this paper by a negative payment to the banker. Hence, in our

paper, at each time t < τ , the banker can receive a positive, a zero or a negative transfer.

Positive transfer corresponds to some dividend paid to the banker while negative transfer

is consistent with a capital injection by the banker. To capture the fact that in general,

recapitalization is costly, we assume that the banker has to bear a cost α > 0 for each

unit of capital contributed. Moreover, we also assume that the amount of capital per unit

of time the banker can contribute can not exceed some quantity K, that is dCt ≥ −Kdt.
This lower bound can be justified by some exogenous borrowing constraint due to the

imperfection of capital market.

If the banker discounts the future at the rate ρ and the DIC at the riskless interest

rate8 r < ρ, then, given a contract (τ , C) and an effort strategy A, the total expected

6 In our model, the choice of effort level affects the expected value of the cashflow but not its volatility.
Moreover, the effort at time t affects only the distribution of the cashflows at this time.

7Since E

 +∞∫
0

e−ρtdRt

 = +∞∫
0

e−ρtµdt = µ
ρ
, if W̃ > µ

ρ
then, for the banker, running a bank is worse

than outside options.
8The assumption that r < ρ means that the DIC is more patient than the banker.
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utility for the banker as of time 0, if she never quits, is given by

EA
 τ∫

0

e−ρt
[
(1 + α1{dCt<0})dCt + v(At)dt

]
+ e−ρτW̃


and for the DIC by

EA
 τ∫

0

e−rtdRt −
τ∫

0

e−rtdCt

 = EA
 τ∫

0

e−rt (µAtdt− dCt)


where EA denotes the expectation operator under the probability measure PA.

An effort strategy is defined as incentive compatible with respect to the contract (τ , C)

if it maximizes the total expected utility of the banker given (τ , C). Here we focus on the

contracts that induce the banker to choose the effort strategy A∗ = {At = 1 ∀0 ≤ t < τ}
(i.e. the banker exerts high effort every time) and if facing these contracts, the banker will

never choose to quit. We label such a class of contracts as incentive compatible one. The

DIC’s problem is to find, among this class, the contract which provides him with highest

payoff.

We denote by P the probability measure generated by the effort process A∗ and by E
the expectation under P. Then, the DIC’s problem can be formulated as follows

Max E

 τ∫
0

e−rt (µdt− dCt)

 (1)

subject to the following constraints

A∗ = {At = 1 ∀0 ≤ t < τ} is incentive compatible w.r.t (τ , C) (2)

W0 = E

 τ∫
0

e−ρt(1 + α1{dCt<0})dCt + e−ρτW̃

 (3)

E

 τ∫
t

e−ρ(s−t)(1 + α1{dCs<0})dCs + e−ρ(τ−t)W̃

∣∣∣∣∣∣Ft
 ≥ W̃ ∀0 ≤ t < τ (4)

∀0 ≤ t < τ : dCt ≥ −Kdt (5)

The formulation of the constraint (3) is in line with DeMarzo and Sannikov (2006).

By varyingW0, we can use this solution to consider different divisions of bargaining power

between the banker and the DIC. For example, if the DIC charters a banker from a

competitive pool, then W0 is chosen such that the DIC’s expected payoff as of time 0 is

maximal subject to the constraint that the banker receives at least W̃ (i.e. W0 ≥ W̃ ).

7



4 Optimal contract

In this section, we present the derivation of the optimal contract. Based on the tech-

niques introduced by Sannikov (2008), we know that instead of contingent the optimal

contract on the whole history of the loan’s cashflows, we can use the banker’s continuation

utility as state variable and write the contract as function of this variable. Therefore,

the characterization of the optimal contract will proceed in three steps. First, we state a

result that relates the incentive compatibility condition of the effort process A∗ to the dy-

namic evolution of the banker’s continuation utility. Next, we prove that the DIC’s payoff

function can be determined as solution to some ordinary differential equations. Finally,

by solving this equation, we find the optimal contract.

4.1 Incentive compatibility condition

Here, we derive the incentive compatibility constraint for the banker. Given a contract

(τ , C), for each t < τ , denote by WA
t the banker’s continuation utility corresponding to

an effort strategy A = {At, 0 ≤ t < τ}. It is the total expected utility the banker derives
from the transfers paid to her from time t on if she follows the strategy A.

WA
t = EA

 τ∫
t

e−ρ(s−t) [(1 + α1{dCs<0})dCs + v(As)ds
]

+ e−ρ(τ−t)W̃

∣∣∣∣∣∣Ft


The following lemma provides a useful representation of WA
t

Lemma 1 There exists a stochastic process GA =
{
GAt , 0 ≤ t <∞

}
that represents the

sensitivity of the banker’s continuation utility to the cashflows, i.e.

dWA
t =

(
ρWA

t − v(At)
)
dt− (1 + α1{dCt<0})dCt +GAt dZ

A
t (6)

Proof. Define by V A
t the banker’s lifetime utility corresponding to the contract (τ , C)

and to the effort stratety A = {At, 0 ≤ t < τ} conditionally on the information available
at time t < τ , then

V A
t = EA

 τ∫
0

e−ρs
[
(1 + α1{dCs<0})dCs + v(As)ds

]
+ e−ρτW̃

∣∣∣∣∣∣Ft


So, we can rewrite V A
t as follows

V A
t =

t∫
0

e−ρs
[
(1 + α1{dCs<0})dCs + v(As)ds

]
+ e−ρtWA

t

that implies

dV A
t = e−ρt

[
(1 + α1{dCt<0})dCt + v(At)dt− ρWA

t dt
]

+ e−ρtdWA
t (7)
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On the other hand, by construction, we have that V A
t is Ft − measurable and that for

all s ≤ t < τ , EA
[
V A
t

∣∣Fs] = V A
s . So, V A

t is a Ft−martingale. By the martingale

representation theorem, there exists a progressively measurable stochastic process GA ={
GAt ,Ft, 0 ≤ t <∞

}
defined on the probability space

(
Ω,F ,PA

)
and satisfying

EA
 t∫

0

(
e−ρsGAs

)2
ds

 <∞
for all 0 ≤ t <∞ such that

V A
t = V A

0 +

t∫
0

e−ρsGAs dZ
A
s (8)

therefore,

dV A
t = e−ρtGAt dZ

A
t (9)

(6) is automatically derived from (7) and (9). Q.E.D.

The lemma 1 provides a representation of the banker’s continuation utility as an Ito

process. This representation is valid for any effort strategy A. The question arised now is

to determine under what conditions the banker will optimally choose to follow the effort

strategy A∗.

Let Wt and Zt be correspondently defined for the effort process A∗. Applying the

lemma 1 to this effort process, we have

dWt = ρWtdt− (1 + α1{dCt<0})dCt +GtdZt (10)

where G = {Gt,Ft, 0 ≤ t <∞} is defined on the probability space (Ω,F ,P). Obviously,

at each time t, to decide what level of effort should be taken, the banker will rely on how

this decision affects her continuation utility. Exerting high effort at time t (At = 1) im-

mediately causes a loss of private benefit B to the banker but it improves her continuation

value in expected term by Gt
σ µ. Hence, intuitively, choosing high effort is profitable to the

banker as long as Gt
σ µ ≥ B. A formal statement of this result is the following:

Proposition 1 The strategy of exerting high effort at any time is optimal for the banker
if and only if the volatility of her continuation utility Gt is at least equal to B

µ σ for all

t ∈ [0, τ).

Proof. See appendix A.

The proposition 1 means that for the incentive provision purpose, the banker has to

bear some minimum risk, which is materialized by requiring that her continuation utility

must be sensitive enough to the cashflows.
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4.2 DIC’s continuation payoff function

The incentive compatibility condition being defined, it is the time for characterizing

the DIC’s payoff function. Denote it by F (Wt)
9. It stands for the maximal continuation

payoff the DIC can earn from all incentive compatible contracts when a continuation utility

Wt is promised to the banker at time t.

Consider an infinitesimal time interval [t, t+ dt), given a promised utility Wt for the

banker, if a transfer dCt is paid to her during this period, the DIC immediately receives

dRt − dCt and his continuation payoff is equal to F (Wt + dWt). In other words, given

the payment dCt to the banker, the actual change in the DIC’s payoff is measured by the

sum of dRt − dCt and F (Wt + dWt)− F (Wt). Since the DIC discounts the future at the

rate r, the expected change of his payoff during the considered time interval is represented

by the term rF (Wt)dt. Therefore, intuitively, the DIC’s payoff function is solution to the

following equation:

rF (Wt)dt = Max E [dRt − dCt + F (Wt + dWt)− F (Wt)] (11)

equivalently,

rF (Wt)dt = Max {(µdt− dCt) + E [dF (Wt)]} (12)

On the left-hand side of (12), we have the expected change in the DIC’s payoff. On the

right-hand side, we have the sum of the expected cashflows accruing to him and of the

expected change in his continuation value. The maximization means that the current

choice is managed optimally, bearing in mind not only the immediate payments but also

the consequences for future payoffs.

In what follows, we will assume that the function F (.) is concave, which will be checked

later. We first determine the condition under which a positive transfer should be paid to

the banker. To provide the banker with the utility Wt, the DIC has the option to pay

a lump-sum transfer of dCt > 0 and switching to the contract with promised utility

Wt − dCt. The DIC’s payoff corresponding to this compensation structure is equal to

F (Wt − dCt) − dCt. So, giving a positive compensation to the banker is optimal for the
DIC if and only if

F (Wt) ≤ F (Wt − dCt)− dCt

In other words, paying a positive transfer is optimal over the range of Wt where the

function F (Wt) +Wt is nonincreasing. Define W ∗ by

W ∗ = inf
{
W : F

′
(W ) = −1

}
Owing to the concavity of the function F , we obtain

dCt > 0 if and only if Wt > W ∗

Now, we turn to the circumstance under which the banker will be required to inject

9Note that by the stationnary property of the contract, the DIC’s payoff function is common to all
dates. Hence, we write it without any time label on the function symbol.
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capital into the bank. Similarly with dividend threshold, to be able to find recapitalization

threshold, we should compare the DIC’s payoff between different payment structures.

Given the utility Wt promised to the banker, if the DIC requires the banker to contributes

−dCt > 0, because of the cost of capital contribution, he has to move to the contract with

promised utility Wt− (1 +α)dCt and gets a payoff F (Wt − (1 + α)dCt)− dCt. Therefore,
demanding a recapitalization is optimal if and only if

F (Wt) ≤ F (Wt − (1 + α)dCt)− dCt

or

F (Wt) +
Wt

1 + α
≤ F (Wt − (1 + α)dCt) +

Wt − (1 + α)dCt
1 + α

Thus, a recapitalization should happen over the range of Wt where the function F (Wt) +
Wt

1+α is nondecreasing. Define W̄ by

W̄ = inf

{
W : F

′
(W ) = − 1

1 + α

}
Since the function F is concave, it is obvious that W̄ is less than W ∗.

In summary, the banker collects a positive compensation once Wt > W ∗. When Wt is

in between W̄ and W ∗, no transfer between the DIC and the banker occurs. Finally, if

Wt falls below W̄ , the banker must inject capital into the bank. Since the banker has the

possibility to quit and take outside option with reservation utility W̃ , on the equilibrium

path, Wt can not fall below W̃ and the DIC must close the bank once Wt reaches this

boundary value, which implies F (W̃ ) = 0.

Hence, over the interval
(
W̄ ,W ∗

]
, the dynamic evolution of the banker’s continuation

utility Wt becomes:

dWt = ρWtdt+GtdZt

Using Ito’s formula to compute dF (Wt), we see from (12) that over
(
W̄ ,W ∗

]
, the DIC’s

payoff function has to satisfy the following condition:

rF (Wt) = Max
Gt≥Bµ σ

[
µ+ F ′(Wt)ρWt +

1

2
F ′′(Wt)G

2
t

]

Since the function F (.) is concave, it is optimal to set Gt at its minimal possible value
B
µ σ, which indicates that over

(
W̄ ,W ∗

]
, the DIC’s payoff function is solution to

rF (Wt) = F ′(Wt)ρWt +
1

2
F ′′(Wt)

B2

µ2
σ2 + µ

Regarding the case where Wt belongs to the interval
(
W̃ , W̄

]
, we know that the bank

should be recapitalized. We assume that in this case, payments to the banker are absolutely

continuous with respect to time, that is dCt = ctdt where ct ∈ [−K, 0), then, the banker’s

continuation utility evolves according to

dWt = [ρWt − (1 + α)ct] dt+GtdZt

11



Again, applying Ito’s formula, we obtain:

rF (Wt) = Max
ct∈[−K,0), Gt≥Bµ σ

[
µ− ct + F ′(Wt) (ρWt − (1 + α)ct) +

1

2
F ′′(Wt)G

2
t

]

Since the function F (.) is concave and F ′(W ) ≥ − 1
1+α for W ∈

(
W̃ , W̄

]
, we get the result

that over
(
W̃ , W̄

]
, it is optimal to let ct = −K and Gt = B

µ σ, the DIC’s payoff function

will be solution to

rF (Wt) = F ′(Wt) (ρWt + (1 + α)K) +
1

2
F ′′(Wt)

B2

µ2
σ2 + µ+K

Summing up, the DIC’s payoff function will be composed of two functions. Over the

interval
[
W̃ , W̄

]
, it coincides with the function F1 which satisfies the following ordinary

differential equation

rF1(W ) = F ′1(W ) (ρW + (1 + α)K) +
1

2
F ′′1 (W )

B2

µ2
σ2 + µ+K

Over the interval
(
W̄ ,W ∗

]
, it corresponds to the function F2 - solution to the ordinary

differential equation as follows

rF2(W ) = F ′2(W )ρW +
1

2
F ′′2 (W )

B2

µ2
σ2 + µ

Since these two functions are determined from second-order differential equations with two

free boundaries, we need to specify 6 boundary conditions. The first boundary condition,

namely F1(W̃ ) = 0, ensures that on the equilibrium path, Wt will not fall below W̃ . Three

other conditions, namely F
′
1(W̄ ) = − 1

1+α , F
′
2(W̄ ) = − 1

1+α , F
′
2(W ∗) = −1, come from the

fact that W̄ and W ∗ are respectively recapitalization and dividend thresholds. The fifth

condition F
′′
2 (W ∗) = 0 guarantees the optimality ofW ∗. Finally, in order to insure that the

DIC’s payoff function is continuous, we have to impose that the second-order derivatives

of two functions F1 and F2 match at the boundary W̄ , i.e. F
′′
1 (W̄ ) = F

′′
2 (W̄ ).

The following proposition characterizes the optimal contract

Proposition 2 The optimal contract is characterized through the continuation utility W
of the banker whose dynamic evolution is governed by the following stochastic differential

equation

dWt = ρWtdt+
B

µ
σdZt −

(
1 + α1{dCt<0}

)
dCt

The DIC’s payoff function F is determined as follows

F (W ) =


F1(W ) for W ∈

[
W̃ , W̄

]
F2(W ) for W ∈

(
W̄ ,W ∗

]
F2(W ∗)− (W −W ∗) for W > W ∗

12



where F1 and F2 are specified by rF1(W ) = F
′
1(W ) (ρW + (1 + α)K) + 1

2F
′′
1 (W )B

2

µ2
σ2 + µ+K

rF2(W ) = F
′
2(W )ρW + 1

2F
′′
2 (W )B

2

µ2
σ2 + µ

with six boundary conditions: F1(W̃ ) = 0, F ′1(W̄ ) = F ′2(W̄ ) = − 1
1+α , F

′′
1 (W̄ ) = F ′′2 (W̄ ), F ′2(W ∗) =

−1 and F ′′2 (W ∗) = 0. The banker has to inject more capital into the bank when Wt ∈(
W̃ , W̄

]
and receives positive payments if Wt > W ∗.The bank will be closed in the first

time W reaches W̃

τ = inf
{
t : Wt = W̃

}
Proof. See appendix B

Compensations for the banker described in the above proposition can be summarized

in the following figure

Figure 1: Compensations for the banker

We found that recapitalization threshold is decreasing with α while dividend threshold

is increasing with it. Thus, when recapitalization cost is higher, not only the recapital-

ization region is reduced but also, for prudent reason, it takes more time for the bank to

start distributing dividend. Two limiting cases concerning recapitalization cost are worth

mentioning. When α = 0, we see that F ′2(W̄ ) = −1 = F ′2(W ∗), which means that two

thresholds W̄ and W ∗ coincide. The intuition is that since recapitalization is costless, it

is optimal for the DIC to use this punishment device as soon as possible. For the other

case, when α → +∞, relying on the value of the function F1 at the point W̃ , we obtain

F ′1(W̃ ) = 0 = F ′1(W̄ ). Hence, if α → +∞, then W̄ → W̃ , i.e. no recapitalization is

involved in the optimal contract. This result is also intuitive.

Corollary 1 In two limiting cases concerning the recapitalization cost, the optimal con-
tract exhibits following properties

α→ 0 : W̄ →W ∗

α→ +∞ : W̄ → W̃

4.3 Determination of initial rent for the banker

Proposition 2 describes the optimal contract for a given initial promised utility W0

for the banker. We now study how this value is determined. In the context of banking

regulation, it is reasonable to think of the situation where the DIC has the right to charter

13



a banker from a competitive pool. Hence, the DIC retains all bargaining power. The

initial rent for the banker is determined by

W ∗0 = arg max
W0≥W̃

F (W0)

5 Implementation of the optimal contract

5.1 Implementation results

So far, we characterized the optimal contract that induces the banker to exert high

effort every time. Now, we consider to implement this optimal contract through a reg-

ulatory menu which is designed by the DIC and informed to all potential bankers from

the initial time. The DIC acting as a supervisory authority commits to pursue it. Our

regulatory menu consists of three tools: bank chartering, capital regulation and deposit

insurance premium.

Bank chartering. It defines the initial amount of capital E0 the banker must contribute

to open the bank. Once the banker obtains the charter to set up the bank, she will collect

D units of deposits. This amount of deposits is invested in the risky loan portfolio whereas

the initial capital is kept as cash to meet possible future liquidity needs. The amount of

cash grows at the risk - free rate r.

Deposit insurance premium. It is characterized by a sequence of payment dPt from the

banker to the DIC during each time interval [t, t+ dt)10.

Capital regulation. It determines the rules regarding distribution of dividends, recapi-

talization and liquidation policy.

Note that all provisions of the regulatory menu will be made contingent on the amount

of capital Et of the bank. In other words, in our implementation, the level of bank’s capital

plays the role of a record-keeping device, as Wt does in the abstract characterization of

optimal contract. For implementation purpose, we define two thresholds E∗, Ē which

respectively correspond to W ∗ − W̃ , W̄ − W̃ .

Proposition 3 The following regulatory menu will implement the optimal contract
In order to get a licence of opening a bank, the banker must contribute an amount of

capital E0 = W0 − W̃ . During each infinitesimal time interval [t, t+ dt), the banker has

to pay to the DIC

dPt =


[
B − ρW̃ − (ρ− r)Et

]
dt+

(
1− B

µ

)
dRt for Et > Ē[

B − ρW̃ − (ρ− r)Et
]
dt+

(
1− B

µ

)
dRt − αKdt for Et ≤ Ē

The bank is prevented to distribute dividends as long as the amount of capital is not

greater than E∗. When its level of capital is larger than this threshold, all excess capital is

10Our insurance premium is paid after the realization of the bank’s cash-flows.
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distributed as dividends. The DIC orders a recapitalization from the bank if its capital level

falls below Ē. The bank is placed into the liquidation procedure if its amount of capital is

zero.

Proof. See appendix C

In the above implementation, the bank’s capital level Et at each time t before the

liquidation time is related to the banker’s continuation utility Wt by the functional rela-

tionship Et = Wt − W̃ for all t. The initial amount of cash is financed by equity which

is capital contributed by the banker. To ensure the voluntary participation of the banker,

E0 could not exceed W0 − W̃ . Since we assume that the DIC charters a banker from a

competitive pool, it is optimal for the former to set E0 = W0 − W̃ . This prescription
regarding the minimum starting capital level for opening a bank is present in law of a

number of countries.

The periodic payment to the DIC (i.e. the deposit insurance premium) is determined

to coordinate the evolution of the bank’s capital level with the motion of the banker’s

continuation utility characterized in the proposition 2. We observe that this insurance

premium is decreasing with the amount of bank’s capital at each time. Hence, our insur-

ance premium can be interpreted as risk - based premium where the risk is measured by

bank’s capital level11.

Relatively to the capital regulation, we see that the regulation system derived in our

model and the US PCA have several similarities. Indeed, our regulation system specifies

that restrictions on banks become more stringent the less capitalized banks are. According

to our regulation, banks can be classified in four categories based on their capital level.

Banks with high level of capital (more than E∗) would be subject to minimum prudential

intervention, they can distribute dividends to shareholders. In banks with intermediate

capital level (i.e. their capital level falls into the interval
[
Ē, E∗

)
), dividend distributions

are suspended but banks are still allowed to continue in normal operation, no capital

restoration is required. If the bank’s capital level still falls lower, the regulator will order

banks to recapitalise promptly and in the worst situation, the bank’s authorities resolve

banks through liquidation. A remark is that when the bank has to proceed a recapital-

ization, the DIC will reduce the premium by αK which exactly corresponds to the total

cost of recapitalization. This premium reduction can be seen as a subsidy from the DIC

to the undercapitalized banks in replenishing capital.

5.2 Discussion

Banking supervisors’discretion: A key component of any regulatory arrangement is the

nature, timing and form of intervention. The novelty of the US PCA is that it recommends

a reduction of supervisory discretion by requiring the supervisors to take some prespecified

intervention actions at some predetermined thresholds of banks’capital. Our approach to

11Notice that differently with Shim (2006), our insurance premium is increasing with the bank’s cash-
flows. The reason for this difference is that in Shim (2006), the bank’s cash-flows are unobservable and
so, negative relationship between the bank’s return and the payment to the DIC is necessary to truthfully
reporting incentive. In our model, we don’t have asymmetric information concerning the bank’s returns.
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design the banking regulation is to implement the ex-ante optimal contract without the

possibility of renegotiation. Therefore, as is done in the US PCA, in our model-implied

capital regulation, all actions of the regulator is specified ex-ante by the law, which means

that the regulators’ discretion is limited. Another aspect introduced in the US PCA

in favor of limiting regulatory forbearance is the provisions calling for timely resolution.

According to these provisions, banks should be closed before the economic value of their

capital becomes negative. Our liquidation policy exhibits the same property in the sense

that it claims to liquidate the banks as soon as their capital is wiped out. Insolvent banks

with negative capital should not be allowed to continue in operation.

Book - value vs. Market - value: One of the major issues about the effectiveness

of the US PCA is related to its intervention triggering device. The triggers for prompt

corrective actions in FDICIA are based on historical - cost accounting measures (i.e. on the

book-value of capital), which raises the concerns about the adequacy of such indicators.

Some studies (e.g. Peek and Rosengren (1996, 1997) and Jones and King (1992, 1995))

have noted that the capital ratio thresholds used in PCA are lagging indicators of a

bank’s financial status. In our proposed regulation system, the regulatory restrictions

are contingent on the book-value of capital. However, this result should not be seen as a

support for the use of book - value against the use of market - value measure. Indeed, what

matters for the discrepancy between book - value and market - value is possible changes in

the interest rates and default probability of loans compared to the initial situations when

liabilities and assets are acquired12. In our model, both variables (r and σ) are assumed to

be fixed over time. So, there is no interest to distinguish these two measures. A rigorous

analyse of the choice between two measures requires a richer setting than ours.

6 Conclusion

In this paper, we apply the approach of designing prudential regulation of banks as

a mechanism to implement the socially optimal allocation proposed by Shim (2006) to

study the optimality of the current US Prompt Corrective Action. In a dynamic setting

where the regulator (the DIC) can not observe the effort chosen by the banker and can

require the banker to inject capital during the operation of bank, we first derive the opti-

mal contract specifying the payments to the banker and the liquidation policy, using the

banker’s expected discounted utility as sate variable. Then, we show that this contract can

be implemented by a combination of capital regulation and risk-based deposit insurance

premium. From the implementation results, we observe that the PCA version applied in

the US closely mimics properties of an optimal regulation.

12Book value is the amount paid for an asset or acquired upon issuance of a liability in the past, net
of some accounting adjustments, such as reserving against expected losses from default. But changing
interest rates affect the present value of fixed-interest obligations, and changing economic conditions affect
the probability that loans will not be repaid as was expected when they were made. Consequently, the
book value of equity often is discrepant from its market value.
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A Appendix: Proof of proposition 1

Define by Vt the total utility the banker expects to get from the contract (τ , C) if she

chooses the effort strategy A∗ conditionally on the information available at time t < τ

Vt = E

 τ∫
0

e−ρs(1 + α1{dCs<0})dCs + e−ρτW̃

∣∣∣∣∣∣Ft


and by Ṽt the one the banker receives if she follows an effort strategy A up to time t < τ

and then, switches to the strategy A∗

Ṽt =

t∫
0

e−ρs
[
(1 + α1{dCs<0})dCs + v(As)ds

]
+E

 τ∫
t

e−ρs(1 + α1{dCs<0})dCs + e−ρτW̃

∣∣∣∣∣∣Ft


So,

Ṽt = Vt +

t∫
0

e−ρsv(As)ds

Similarly to (8), we can represent Vt as Vt = V0 +

t∫
0

e−ρsGsdZs. Hence, the dynamic

evolution of Ṽt under the probability measure P is the following

dṼt = e−ρtv(At)dt+ e−ρtGtdZt

Since Zt and ZAt are related by the equality dZt = dZAt + 1
σ (µAt − µ) dt, under the

probability measure PA, Ṽt evolves according to

dṼt = e−ρt
(
v(At) +

Gt
σ
µAt −

Gt
σ
µ

)
dt+ e−ρtGtdZ

A
t

Conclusion 1 If Ṽt is PA − submartingale, then the effort strategy A∗ is suboptimal for
the banker

Proof. Indeed, the fact that Ṽt is PA − submartingale means for all s ≤ t,

EA
(
Ṽt

∣∣∣Fs) ≥ Ṽs
Therefore, for all t ≥ 0,

V0 = Ṽ0 ≤ EA
(
Ṽt

)
(13)

Note that EA
(
Ṽt

)
represents the total utility the banker expects to get at date 0 if she

follows a strategy A until the time t and then, follows the strategy A∗. Obviously, (13)

implies that the strategy A∗ is suboptimal compared to A.

Conclusion 2 If Ṽt is PA − supermartingale, then the effort strategy A∗ is at least as
good as the strategy A for the banker
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Proof. Since Ṽt is PA − supermartingale, we have

EA
(
Ṽt

∣∣∣Fs) ≤ Ṽs
for all s ≤ t. Applying the optional sampling theorem, we get

EA
(
Ṽτ

)
≤ Ṽ0 = V0 (14)

EA
(
Ṽτ

)
accounts for the total utility the banker expects to get at date 0 if she always

follows the strategy A and so, (14) concludes the proof.

From two conclusions above, we obtain the necessary and suffi cient condition for the

optimality of the strategy A∗. That is, the drift coeffi cient of Ṽt under PA is non positive:

v(At) +
Gt
σ
µAt −

Gt
σ
µ ≤ 0 for all At ∈ {0, 1}

It is equivalent to Gt ≥ σBµ . Q.E.D

B Appendix: Proof of proposition 2

For the formal proof, we have to establish the following conclusions:

1) the contract characterized in this proposition is incentive compatible

2) It is optimal among the class of incentive compatible contracts

Because of the proposition 1, the incentive compatibility of the characterized contract

is derived directly from the specification of the dynamic evolution of banker’s continuation

utility. The proof for the optimality proceeds as follows:

B.1 Upper bound of the DIC’s expected payoff

Here, we will prove that the function F - solution, if exists, to the equation (12) with

boundary condition F (W̃ ) = 0 constitutes an upper bound for the expected payoff the

DIC can earn from any incentive compatible contract that delivers the banker an initial

expected discounted utility W0.

Consider any incentive compatible contract (τ , C), the expected payoff of the DIC is

evaluated by

E

 τ∫
0

e−rtdRt −
τ∫

0

e−rtdCt

 = E

 τ∫
0

e−rt (µdt− dCt)


Define a stochastic process M = {Mt} by

Mt =

t∫
0

e−rsdRs −
t∫

0

e−rsdCs + e−rtF (Wt) (15)
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where Wt is defined by (10) with Gt ≥ B
µ σ. We have

dMt = e−rt (dRt − dCt − rF (Wt)dt+ dF (Wt))

which implies

ertdMt = µdt− dCt − rF (Wt)dt+ E (dF (Wt)) +
(
σ + F

′
(Wt)Gt

)
dZt

Since F (Wt) is solution to (12), the drift coeffi cient of the dynamic evolution of Mt is

negative, which indicates that M = {Mt} is supermartingale. Therefore,

E

 τ∫
0

e−rt (µdt− dCt)

 = E [Mτ ] ≤M0 = F (W0) (16)

In (16), the first equality stems from F (Wτ ) = F (W̃ ) = 0; the inequality is due to the

optional sampling theorem.

B.2 DIC’s expected payoff from the optimal contract

Now, we show that the contract characterized in this proposition provide the DIC

with expected payoff exactly equal to F (W0). Notice that if the process M = {Mt} is
martingale, then

E

 τ∫
0

e−rt (µdt− dCt)

 = E [Mτ ] = M0 = F (W0)

Therefore, we should prove that under the contract characterized in the proposition 2, the

process M = {Mt} defined by (15) is a martingale.

B.2.1 Existence, uniqueness and concavity of the function F2

We fixe some value W̄ . Define a function S2(W ) by S2(W ) = F2(W ) + W . Hence,

S2(W ) satisfies the following differential equation

rS2(W ) = µ− (ρ− r)W + S
′
2(W )ρW +

1

2
S
′′
2 (W )

B2

µ2
σ2 (17)

on the region
[
W̄ ,W ∗

]
with boundary conditions S

′
2(W̄ ) = α

1+α , S
′
2(W ∗) = 0 and

S
′′
2 (W ∗) = 0. The homogeneous differential equation associated with (17) is written as

follows

rS2(W ) = S
′
2(W )ρW +

1

2
S
′′
2 (W )

B2

µ2
σ2 (18)

It is easy to see that µ
r + W constitutes a particular solution to (17). Assuming that

P0(W ) and P1(W ) are two particular solutions of the homogeneous differential equation

(18) such that P0(W̄ ) = 0, P
′
0(W̄ ) = 1 and P1(W̄ ) = −1, P

′
1(W̄ ) = 0. Since the Wronskian

LP0P1(W ) associated with P0(W ) and P1(W ) has non-zero value at the point W̄ , the two

function P0(W ) and P1(W ) are linearly independent. Therefore, general solution to the
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equation (17) will be written as

S2(W ) =
µ

r
+W + d0P0(W ) + d1P1(W )

Based on two conditions S
′
2(W̄ ) = α

1+α and S
′
2(W ∗) = 0 with some value W ∗, we obtain

d0 = − 1

1 + α

d1 =

P
′
0(W ∗)
1+α − 1

P
′
1(W ∗)

Thus, the general solution to the equation (17) becomes

S2(W ) =
µ

r
+W − 1

1 + α
P0(W ) +

P
′
0(W ∗)
1+α − 1

P
′
1(W ∗)

P1(W )

Because of (17), we get

1

2

B2

µ2
σ2S

′′
2 (W ∗) =

ρW ∗P
′
1(W ∗)− rP1(W ∗)− r

1+αLP0P1(W
∗)

P
′
1(W ∗)

(19)

Define a function Φ(W ) =
ρWP

′
1(W )−rP1(W )
LP0P1 (W ) , the equality (19) becomes

1

2

B2

µ2
σ2S

′′
2 (W ∗) =

(
Φ(W ∗)− r

1+α

)
LP0P1(W ∗)

P
′
1(W ∗)

(20)

Now we will prove that the function Φ(W ) is strictly decreasing and concave. Indeed,

from the following expression of the Wronskian: LP0P1(W ) = exp

(
ρ(W̄ 2−W 2)

B2

µ2
σ2

)
obtained

by applying the Abel’s identity, we get13

Φ
′
(W ) =

(ρ− r)P ′1(W )

LP0P1(W )

Φ
′′
(W ) =

2r
B2

µ2
σ2

(ρ− r)P1(W )

LP0P1(W )

Therefore, showing that the function Φ(W ) is strictly decreasing and concave is equivalent

to prove that P
′
1(W ) < 0 for all W > W̄ . Assuming by contradiction that there exists

W ∈
(
W̄ ,+∞

)
such that P

′
1(W ) > 0. Define Ẅ = inf

{
W > W̄ : P

′
1(W ) > 0

}
, then

∀W ∈
(
W̄ , Ẅ

)
: P
′
1(W ) < 0 (21)

which implies that P1(Ẅ ) < P1(W̄ ) = −1 < 0. Since the function P1(W ) satisfies

1

2

B2

µ2
σ2P

′′
1 (W ) + ρWP

′
1(W )− rP1(W ) = 0

13Note that P1(W ) is solution to the homogeneous differential equation (18).
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we get P
′′
1 (Ẅ ) < 0. Hence, in the neighbourhood

[
Ẅ − ε, Ẅ

)
, the function P

′
1(W ) is de-

creasing which means that forW ∈
[
Ẅ − ε, Ẅ

)
, P

′
1(W ) > P

′
1(Ẅ ) > 0, contradiction with

(21). In summary, we have P
′
1(W ) < 0 for all W > W̄ and so, Φ(W ) is strictly decreasing

and concave function. From (20), we see that the equation S
′′
2 (W ∗) = 0 equivalent to

Φ(W ∗) = r
1+α will have unique solution W

∗. Moreover, because Φ(W̄ ) = r > r
1+α , such a

solution W ∗ will be greater than W̄ .

Concavity : we show that solution to (17) is concave function. Differentiating the

equation (17), we get

1

2
S
′′′
2 (W )

B2

µ2
σ2 = (ρ− r)

(
1− S′2(W )

)
− S′′2 (W )ρW

Hence, S
′′′
2 (W ∗) > 0, which implies that in the neighborhood (W ∗ − ε,W ∗) of W ∗,

S
′′
2 (W ) < 0 and S

′
2(W ) > 0.We will prove that S

′
2(W ) > 0 for allW ∈

[
W̄ ,W ∗ − ε

]
. Sup-

pose that S
′
2(W ) ≤ 0 for some W < W ∗ − ε. Let Ŵ = sup

{
W < W ∗ − ε : S

′
2(W ) ≤ 0

}
.

So, over the interval
(
Ŵ ,W ∗

)
, S
′
2(W ) > 0 and rS2(W ) < rS2(W ∗) = µ − (ρ− r)W ∗ <

µ−(ρ− r)W . By (17), over this interval S′′2 (W ) < 0. Thus, S
′
2(Ŵ ) = −

W ∗∫
Ŵ

S
′′
(W )dW > 0,

contradiction. Hence, S
′
2(W ) > 0 for all W ∈

[
W̄ ,W ∗

)
. By (17), for all W ∈

[
W̄ ,W ∗

)
,

1
2S
′′
2 (W )B

2

µ2
σ2 ≤ rS2(W )− µ+ (ρ− r)W < rS2(W ∗)− µ+ (ρ− r)W ∗ = 0. Q.E.D

B.2.2 Existence, uniqueness and concavity of the function F1

Considering a function S1(W ) defined by S1(W ) = F1(W ) + W . S1(W ) satisfies the

following differential equation

rS1(W ) = (µ− αK)− (ρ− r)W + S
′
1(W ) (ρW + (1 + α)K) +

1

2
S
′′
1 (W )

B2

µ2
σ2 (22)

over the interval
[
W̃ , W̄

]
with boundary conditions: S1(W̃ ) = W̃ , S

′
1(W̄ ) = α

1+α . As in

the previous part, the general solution to the equation (22) can be written as

S1(W ) =
µ+K

r
+W + b0N0(W ) + b1N1(W )

where N0(W ) and N1(W ) are two particular solutions to the corresponding homogeneous

differential equation such that N0(W̃ ) = 1, N
′
0(W̃ ) = 0 and N1(W̃ ) = 0, N

′
1(W̃ ) = 1.

b0 and b1 are calculated from two boundary conditions S1(W̃ ) = W̃ , S
′
1(W̄ ) = α

1+α with

some fixed value W̄ as follows

b0 = −µ+K

r

b1 =

µ+K
r N

′
0(W̄ )− 1

1+α

N
′
1(W̄ )
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Hence

1

2

B2

µ2
σ2S

′′
1 (W̄ ) =

(
K + ρW̄

1+α

)
N
′
1(W̄ )− r

1+αN1(W̄ )− (µ+K)LN0N1(W̄ )

N
′
1(W̄ )

where LN0N1(W ) is the Wronskian associated with N0 and N1. Define a function Π(W )

by

Π(W ) =

(
K + ρW

1+α

)
N
′
1(W )− r

1+αN1(W )

LN0N1(W )

then,
1

2

B2

µ2
σ2S

′′
1 (W̄ ) =

(
Π(W̄ )− (µ+K)

)
LN0N1(W̄ )

N
′
1(W̄ )

Similarly with the previous part, we can prove thatN
′
1(W ) > 0 for allW > W̃ and that

the function Π(W ) is strictly increasing and convex. Moreover Π(W̃ ) = K+ ρW̃
1+α < K+µ.

Therefore, there exists W̄ > W̃ such that S
′′
1 (W̄ ) ≤ 0.

Concavity : We here prove that as long as S
′′
1 (W̄ ) ≤ 0, then the solution to the equation

(22) is concave function. The proof proceeds very similarly as in the precedent parts.

Differentiating the equation (22), we get

1

2
S
′′′
1 (W )

B2

µ2
σ2 = (ρ− r)

(
1− S′1(W )

)
− S′′1 (W ) (ρW + (1 + α)K)

Hence, S
′′′
1 (W̄ ) > 0, which implies that in the neighborhood

(
W̄ − ε, W̄

)
of W̄ , S

′′
1 (W ) < 0

and S
′
1(W ) > α

1+α . We will prove that S
′
1(W ) > α

1+α for all W ∈
[
W̃ , W̄ − ε

]
. Suppose

that S
′
1(W ) ≤ α

1+α for some W < W̄ − ε. Let W̆ = sup
{
W < W̄ − ε : S

′
1(W ) ≤ α

1+α

}
.

So, over the interval
(
W̆ , W̄

)
, S
′
1(W ) > α

1+α and then for all W ∈
(
W̆ , W̄

)
:

rS1(W )− rα

1 + α
W < rS1(W̄ )− rα

1 + α
W̄ ≤ µ− ρ− r

1 + α
W̄ < µ− ρ− r

1 + α
W (23)

The first inequality comes from the fact that the function S1 is strictly increasing on

the interval
(
W̆ , W̄

]
. The second inequality is obtained by replacing S

′
1(W̄ ) = α

1+α and

S
′′
1 (W̄ ) ≤ 0 into the equation (22). (23) implies that rS1(W ) < µ+ α

1+αρW − (ρ− r)W .

By (22), we have S
′′
1 (W ) < 0 over the interval

(
W̆ , W̄

)
. Thus, 0 >

W̄∫
W̆

S
′′
1 (W )dW = α

1+α −

S
′
1(W̆ ) and so, S

′
1(W̆ ) > α

1+α contradiction. Hence, S
′
1(W ) > α

1+α for all W ∈
[
W̃ , W̄

)
.

By (22), for all W ∈
[
W̃ , W̄

)
, 1

2S
′′
1 (W )B

2

µ2
σ2 ≤ rS1(W ) − µ − α

1+αρW + (ρ− r)W <

rS1(W̄ )− µ− α
1+αρW̄ + (ρ− r) W̄ ≤ 0.

So far, our proof is realized for some fixed value W̄ , the two functions F1 and F2 are

then parameterized by W̄ . To determine this threshold, we rely on the boundary condition

F
′′
1 (W̄ ) = F

′′
2 (W̄ ).
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C Appendix: Proof of proposition 3

In order to prove this proposition, we first establish the following result

E

 τ∫
0

e−rt (r − ρ)Wtdt

+ E

 τ∫
0

e−rt
(
1 + α1{dCt<0}

)
dCt

 = W0 − E
[
e−rτW̃

]
(24)

Indeed, considering a stochastic process {Yt} defined by Yt = e−rtWt. Using Ito lemma,

we obtain the dynamic of {Yt} as follows

dYt = e−rt (ρ− r)Wtdt − e−rt
(
1 + α1{dCt<0}

)
dCt + e−rt

B

µ
σdZt

Hence,

YT∧τ = Y0 +

T∧τ∫
0

e−rs (ρ− r)Wsds −
T∧τ∫
0

e−rs
(
1 + α1{dCs<0}

)
dCs +

T∧τ∫
0

e−rs
B

µ
σdZs

Taking the expectation of both sides and then let T →∞, we get

E
[
e−rτW̃

]
= W0 + E

 τ∫
0

e−rs (ρ− r)Wsds

− E
 τ∫

0

e−rs
(
1 + α1{dCs<0}

)
dCs


which is exactly the equality (24).

Owing to the above result, we can easily show that

E

 τ∫
0

e−rtdPt

 = E

 τ∫
0

e−rt (µdt− dCt)

+ E0 = F (W0) + E0

.
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