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Executive Summary

•	 Standard risk models based on historical data have deficiencies: the results of these models 
depend heavily on the period used for calibration. In addition, the models make unrealistic ex-ante 
assumptions (such as on the distribution that price changes follow) that may lead to underestimation 
of tail risks. 

•	 In this note, we walk through a risk-modelling approach that, as far as possible, uses forward-looking, 
market-implied information from the currency option market to shed light on the risk of the Fund’s 
currency position. This model is used at NBIM as a complement to standard risk models. 

•	 Analysing the Fund’s new benchmark for fixed-income investments, we find that increasing the 
allocation to emerging-market currencies adds to short-term currency tail risk, when measured 
in a common reference currency. The market-implied tail-risk model predicts expected losses in 
adverse years to be 30-60 percent higher than the standard models. 
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Motivation and background
From a risk management perspective, tail risks and return distribution asymmetries of investments 
are important to analyse. In this note, we describe a modelling approach that addresses some of the 
weaknesses of standard risk models. We use the model internally as a complement to standard models 
to evaluate tail risk in foreign-exchange (FX) positions. Examples of tail events for FX positions could 
be single-currency devaluations or more widespread flight-to-quality/carry-trade-unwind episodes. 
Formal tail-risk modelling involves a lot of mathematics, and while we have left out some details, we 
have kept relevant technicalities to motivate the approach we have chosen. 

Most risk models in practical use at asset managers assume that FX rate changes follow a normal 
distribution. This is clearly not the case in the real world. Figure 1 shows the empirical weekly NZD/JPY 
FX rate return from January 1997 against a theoretical normal distribution having the same volatility 
as the data set. The NZD/JPY return on the x-axis will be negative if the NZD weakens against the 
JPY. It is clearly seen that the left tail of the fitted normal distribution does not reflect the fat tail in 
the empirical distribution. In other words, if a normal distribution is used when modelling the FX risk, 
we would underestimate the tail risk of a long NZD, short JPY position. This position is an example 
of a typical carry strategy, where one borrows in lower-yielding currencies such as JPY and invests 
in higher-yielding currencies such as NZD. 

Figure 1. Empirical NZD/JPY distribution versus a fitted normal distribution.
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Dynamic volatility models, such as GARCH models, could potentially model fat-tailed distributions 
for a single financial time series such as NZD/JPY. However, these models do not easily extend to 
the multivariate case that is needed for portfolio risk modelling. Another approach to mitigate this 
deficiency is to use a parametric distribution that allows fat tails (Student-t, skewed Student-t and 
normal inverse Gaussian (NIG) are examples). Estimation of the parameters for the normal distribution 
is straightforward, which is probably why it is often used as the default assumption. Estimating the 
parameters for fat-tailed distributions can be much more complex, and using these will not mitigate 
another important issue: the selection of historical data used for estimation. 

Measurement of risk usually involves using price history as input for estimating the models used for 
forward projections of risk. To make the risk estimates relevant for the current period, a rolling historical 
window is often used, either explicitly or implicitly by applying a decay factor to return series. If the 
resulting data set is used to calibrate a parametric model and it does not contain any large moves, a 
parametric model will have difficulties in predicting large moves in the future. One of the challenges 
then is in anticipating that large moves are possible when prices and rates have been relatively stable 
in the estimation period. Figure 2 illustrates this issue by looking at four previous emerging-market 
(EM) devaluation episodes (against USD) for four managed floating currencies. Measured volatility 
would be relatively low leading up to the devaluation, as price movements were small before. Volatility 
measurement for floating exchange rates has the same problem in periods of apparent stability.
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Figure 2. Four currency episodes. Indexed to value before drop.
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One of our goals is to develop a risk model that captures the fat-tailed feature of the empirical 
distributions of FX rates. In addition, we would like it to be independent of the sampling period and 
update its estimates quickly to new information. 

A forward-looking risk model
Foreign-exchange option markets trade on expectations of future volatility. The next sections will 
describe our approach to constructing a currency-risk model based on price data from these markets. 
A final section will present a short portfolio analysis by applying the model to the Fund’s new fixed-
income benchmark and comparing the results to standard models. The approach as presented is 
equally applicable to the currency exposure of the equity benchmark. However, the FX risk for an 
unhedged equity position (where the business risk of the firm will dominate) accounts for a smaller 
part of its total risk than for a fixed-income position. It is important to note that we do not believe 
that one model can have all the answers. However, the aim is to improve on basic risk models, and 
we believe the option-based approach can provide several key benefits, as detailed below. Figure 
3 shows the outline of the steps we follow to tie what we call a “forward-looking” risk model for 
foreign-exchange positions together. 

Figure 3. FX modelling steps, full market-implied model.
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Briefly put, the risk model consists of three steps. In the first step, we calculate the market-implied 
distribution for individual currency pairs. In the second step, we calculate a correlation matrix to describe 
the dependencies between all FX pairs, again using data from option markets as far as possible. In 
the third step, we employ a simulation procedure using the parameters from the first two steps to 
arrive at a distribution for the portfolio we are analysing. From this distribution we can calculate all 
the risk statistics we are interested in. 

A summary of the key differences between the risk model described in this note and a standard 
(lognormal) risk model is provided in Table 1. 

Table 1. Comparison of standard models and option-based model.

Standard lognormal risk model NBIM option-implied method

Model assumptions and requirements

Asset distribution Log returns follow a normal distribution Assumption-free

Dependence structure Linear (multivariate lognormal) Linear (Gaussian copula) 

Data requirements Historical price data Option volatilities 

Inference Assumes that future distribution can be 
inferred from historical price movements.

Assumes that risk-neutral implied probabilities 
are good proxies for real probabilities, i.e. it 
assumes that option prices contain aggregated 
information on the market view of the prob-
ability distributions of future prices. 

Model limitations and advantages

Single-asset tails Does not model fat tails. Allows fat tails since it is distribution-free.

Correlated tail events Does not model clustering of tail events. Does not model clustering of tail events.

Data-quality sensitivity Quality of price quotes less of an issue, but re-
sults are highly dependent on historical period 
used being representative.

Dependent on good-quality data and a sufficient 
number of data points (strikes) available. 

Implementation effort Low Medium

Implied volatility

An option contract gives its owner the right, but not the obligation, to buy (call option) or sell (put 
option) an asset at a predetermined price (strike) at some date in the future1. This right to buy or sell 
has value and will therefore have a price. The convention in the FX option market is to quote prices 
at “sticky deltas”, with the actual strike being implied by the Black-Scholes option-pricing model. This 
means that quotes will be provided in volatility terms for a given delta value. The delta of an option 
contract represents its sensitivity to price change. More formally, the delta is the derivative of the 
option-pricing formula with respect to a price change. The strike for the 25 delta call is the strike that 
makes this derivative equal to 0.25, and for the 25 delta put it is -0.25. This implies that, according to 
the option-pricing model, a 1 unit increase in the FX rate will increase the value of the call option by 
0.25 units and the put option will lose 0.25 units in value.

Informally, we can say that the implied volatility of an option measures the probability of reaching the 
strike. Figure 4 shows the implied volatility (y-axis) versus deltas for puts and calls (x-axis) on the NZD/
JPY pair for the next year. The Black-Scholes model used to price options assumes that prices follow 
geometric Brownian motions where volatility is flat and constant across strikes. The empirical data 
show that the NZD has a tendency to suddenly weaken, in a non-continuous way, against the JPY. 
Option sellers therefore demand a higher price for selling out-of-the-money puts than out-of-the-money 
calls on the NZD/JPY currency pair. When the option-pricing model is inverted to solve for the volatility 

1 A so-called European option gives the holder the right to exercise on a specific date, while the holder of an American op-
tion would have the right to exercise the contract on all days up to an agreed date. 
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that is consistent with the prices in the market, we observe a volatility skew across strikes: the 10 
delta put is quoted at around 24 percent volatility and the 10 delta call at around 14 percent volatility.

Figure 4. Implied volatility one year ahead for NZD/JPY. P: puts, C: calls (25/07/2012).
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It has been documented that, for assets with active option markets, traded volatilities have a tendency 
to be higher over time than the volatility that is subsequently realised2. This would lead us to overes-
timate risks and is a potential weakness of the implied-volatility approach. Our working assumption is 
that the pricing in option markets provides useful additional information. Another compelling argument 
for using the method is that the underlying options can actually be traded if one wants to manage 
the risk exposure. 

Foreign-exchange market data
Liquidity is an important consideration when implementing a model driven by market data. If trading 
volumes are too thin, liquidity effects rather than information content will dominate changes in prices, 
making the results of the model less relevant.

Due to the global nature of the foreign-exchange market, and to the fact that a lot of trading takes place 
over the counter (OTC), putting an exact number on trading activity is difficult. The Bank of International 
Settlements (BIS 2010) estimates the average daily turnover traded OTC for all foreign-exchange 
derivatives products (forwards, swaps, options etc.) combined to be USD 2.5 trillion, USD 2.1 trillion 
of which in advanced economies and USD 0.4 trillion in emerging-market economies. Turnover in 
“currency options and other products” contributes 9 percent and 6 percent of the total in advanced 
and emerging countries respectively. Although much lower in emerging markets, trading activity there 
is rapidly expanding – turnover was up 140 percent from 2004 to 2010. USD plays an important role 
in FX trading, particularly in emerging markets: it was one of the currencies in 95 percent of all FX 
derivatives transactions in 2010. 

Figure 5 shows how far away from the current price the implied strikes are for 10 and 25 delta puts 
and calls maturing in one year, as quoted by Bloomberg. Official statistics for the distribution of trading 
volumes along the volatility curve are not available. Discussions with trading counterparties indicate, 
however, that there is some liquidity in most emerging-market currency pairs versus USD one year 
ahead at strikes around the 25 delta level. Trading activity around the 10 delta level is much lower. We 
use at-the-money (ATM) and 25 delta quotes and acknowledge that we might overshoot on some of 
the risk statistics calculated from the smallest emerging-market currencies, where liquidity might be 
lower and market-makers may adjust their volatility quotes upwards. 

2 See Carr and Wu (2009).
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Figure 5. Option deltas translated to price changes against USD (20/07/2012).
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Market-implied distributions from implied 
volatilities
In the following, we rely heavily on a result that follows from the framework of arbitrage pricing 
theory: it is possible to mathematically deduce the risk-neutral market-implied probability distribution 
from the implied volatilities of traded options. We describe the result briefly below; see Breeden and 
Litzenberger (1978) for a more thorough description. If we let the price of a call option c(x) be given 
by the risk-neutral expectation:

(1)c(x) =

∫ ∞

x
(s − x)f (s)ds

where x is the strike price and f(s) is the implied probability density for the currency pair, we can show 
that the second derivative of c(x) with respect to x is f(x):

 
(2)

∂c

∂x
=

∂

∂x

∫ ∞

x
sf (s)ds − ∂

∂x
x

∫ ∞

x
f (s)ds

∂c

∂x
= −xf (x)−

∫ ∞

x
f (s)ds + xf (x) = −

∫ ∞

x
f (s)ds

∂2c

∂x2
= f (x)

Hence it is possible to extract the implied probability density function f(x) for the currency pair given 
the implied volatility curve: if we have the volatility curve, we have c(x) and its derivatives, holding 
other inputs to the option-pricing model constant. 

It is worth noting that although we treat the risk-neutral probabilities above as “real probabilities”, 
they are synthetic probabilities valid within the standard derivatives-pricing framework. To get from 
risk-neutral to real probabilities, we would have to calculate the premium investors require as compensa-
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tion for taking on the risk. If we assume the risk premium is a constant3, the main effect would be 
to shift the probability distribution by the premium required. Since our interest is in the shape of the 
probability distribution, not the absolute location, we chose to ignore this effect. For an accessible 
introduction to the relation between real and risk-neutral probabilities, see Bank of England (2012). 

The vanna-volga method
As shown above, to calculate implied probability densities we need to take second derivatives of the 
option price with regard to the strike. To cover all possible outcomes, this means that we need call 
prices for all possible strikes. However, as quotes can only be reliably sourced for the 25 delta (25D) 
puts and calls and the ATM option, we need to approximate values of implied volatilities for missing 
strikes. The vanna-volga method is commonly used to accomplish this task. See Mercurio and Castagna 
(2005) and Mercurio and Castagna (2007) for a more detailed description than provided below. 

We first assume that volatility is flat and stochastic. Then, by using the standard approach in arbitrage 
pricing theory, we set up a hedged portfolio that is long the option with strike K and expiry t that we 
are trying to price, short an amount of the underlying and short some amounts xi of the calls we know 
the prices of (ATM, 25D put, 25D call), where i ∈ 1,2,3 indexes the three options. The xi weights 
chosen are such that the short portfolio will have the same sensitivities to changes in Black-Scholes 
parameters as the option we are trying to price. More formally, the portfolio is locally hedged to all 
partial derivatives up to the second order. The sensitivity to price change is hedged by the short 
position in the underlying; it can also be shown that if two options have the same vega (derivative of 
the option price with respect to volatility) and same maturity, they will have the same gamma (second 
derivative with respect to price). The weights xi can then be found by matching three sensitivities: the 
vega, the second derivative with respect to volatility (volga), and the partial derivative of the option 
price first with respect to volatility then to the FX rate (vanna):

 (3-5)

vega = ∂CBS

∂σ (t;K ) =
3∑

i=1

xi (t;K )
∂CBS

∂σ
(t;Ki )

volga = ∂2CBS

∂σ2 (t;K ) =
3∑

i=1

xi (t;K )
∂2CBS

∂σ2
(t;Ki )

vanna = ∂2CBS

∂σ∂St
(t;K ) =

3∑
i=1

xi (t;K )
∂2CBS

∂σ∂St
(t;Ki )

Mercurio and Castagna (2007) show that the weights can be uniquely determined analytically. They 
further show that, given the weights, the price of the option can be approximated by adjusting the 
flat-volatility price CBS by the premium differences of actual market prices CMKT (where volatility is not 
flat) to a flat-volatility price for the short options in the hedging portfolio: 

(6)
C (K ) = CBS(K ) +

3∑
i=1

xi (K )
[
CMKT (Ki )− CBS(Ki )

]

An approximation of this expression can be inverted to find the implied volatility at the unquoted strike 
K. We include a more detailed development of the expression in the appendix to this note. Figure 6 
shows two volatility curves, for BRL and CHF against USD, resulting from applying the vanna-volga 
approximation to the volatility mid-quotes for ATM, 25D put and 25D call options. The resulting curve 
overlaps quite well with quotes at other strikes in the market.

3 This is a strong assumption. The consensus in modern financial economics is that risk premiums are time-varying; for a 
review, see NBIM Discussion Note 1-2011. Further, Ilmanen (2011) argues that tail risks are particularly well-rewarded (i.e. 
overpriced) following tail-risk events. If that is the case, a model based on option volatilities would overestimate the “true” 
tail risk in a position. A counter to such an argument would be that option volatilities are tradable; if tail risk is clearly mis-
priced, this should eventually attract profit-seeking volatility sellers.
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Figure 6. Extrapolation, CHF/USD and BRL/USD volatility curves (13/06/2012).
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For the liquidity and data availability reasons discussed previously, we use option market quotes from 
Bloomberg for all currencies against USD to estimate implied probability densities. We have found 
that, for the three strikes needed for extrapolation, the Bloomberg quotes are very much in agreement 
with quotes received directly from our counterparties. 

The vanna-volga extrapolation scheme produces relatively smooth curves outside the traded range, 
see Figure 7. It is seen that the EM currencies are more dispersed in terms of level of volatility and the 
volatility skew is higher overall compared to developed-market currencies, when measured against USD. 

Figure 7. Volatility extrapolation. Developed versus emerging markets (20/07/2012). 
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For some currencies, if a call price curve is created using the extrapolated volatility curves and second 
derivatives taken directly, implied probability density will go negative. This is most problematic for 
currency pairs with steep volatility skews. To circumvent this issue, we adopt the novel approach 
described in Fengler (2005). This scheme converts the differentiation problem into a spline-fitting 
problem. In short, call prices calculated from our first-pass extrapolation of the volatility curve are fed 
into a procedure that fits a smoothing spline that penalises deviations from an arbitrage constraint: 
the call price must be a decreasing and convex function of the option’s strike price.

As a spline is defined by knots connected by first and second derivatives, the procedure allows us to 
get rid of negative probabilities and calculate implied probability densities in the same operation. The 
spline-fitting procedure is a quadratic minimisation problem with constraints. 
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Figure 8 demonstrates the effect of the smoothing spline applied to the call price. A minor adjustment 
to the call price function created by the extrapolation procedure creates a smooth probability density 
function for the BRL. In this example, the higher option premium demanded by put sellers in the 
option market manifests itself as a clearly defined heavy downside tail for the implied BRL/USD rate 
distribution. 

Figure 8. Smooth spline interpolation of call price and resulting PDF (BRL/USD on 13/06/2012).
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Given full probability distributions for single currencies, we can calculate some preliminary analytics. 
In Figure 9, we show the probability of three sets of currencies depreciating more than 15 percent 
against USD, as calculated using four different assumptions and models in mid-June 2012. Two of 
them are option-based; one uses a flat volatility curve equal to the ATM volatility, and the other uses 
the volatility curves created as described above. The last two both use a normal distribution assumption 
and different historical data windows of 60 days and 3 years. 

The option-based methods predict higher probabilities of tail events versus USD than the methods 
based on historical data for all currencies. This is due to two factors: traded implied volatilities are 
currently higher than realised volatilities, and, as expected, tails are heavier when calculated using 
information from the full volatility curve than from the flat ATM volatility estimates. Emerging markets 
generally have heavier tails. It is also interesting to see that the option-based model calculates a 
non-zero probability of managed floating currencies such as TWD and THB moving by more than 15 
percent against USD in the next year. Speculation of any breaks would feed into our estimates as 
soon as the market starts to trade on it. 

Figure 9. Probability of 15 percent depreciation against USD (13/06/2012).
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Tail-risk estimates for traditional “reserve currencies” such as JPY, CHF and EUR (which would be 
expected ex ante to have a lower and possibly negative correlation to equity markets and risky assets 
in a downturn) show a marginally lower tail risk than for other currencies. The impact of the recent 
European situation, in which EUR and CHF (pegged to EUR) did not trade like reserve currencies, can 
be seen in Figure 10. The example also highlights a key benefit of using an option-based approach: 
increased implied skewness in the probability distribution of the EUR/USD rate is quickly taken into 
the model as the market perception of EUR changes (the upper tail, which is not shown, does not 
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move as much). A parametric historical model would only allow for this if skewness was explicitly 
modelled and large moves had already occurred in the period used to calibrate the model. 

 
Figure 10. Reserve-currency tail risk estimated using option volatility curves.
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Dependence measure – implied correlations

Since we use market information directly in our modelling of single-currency-pair distributions, and 
do not make ex-ante assumptions on the (marginal) distributions that FX rates follow, a copula-based 
approach to dependence modelling is well-suited. This allows us to model single currencies separate 
from dependencies across rates. In our simulation model, we use a so-called Gaussian copula to draw 
correlated uniform variables, corresponding to points on the marginal cumulative density functions 
of currencies against USD. 

A case for using other copula models with stronger tail dependencies than the Gaussian can certainly 
be made, as synchronised large moves in currencies against USD are plausible in a flight-to-safety 
scenario. However, in selecting a Gaussian copula as our dependence generator, we can compare 
standard multivariate lognormal risk models (implemented in standard risk software) against market-
implied models in the same simulation setup. 

The global currency market is one of few markets where the correlation can be inferred from traded 
prices. As long as all three currencies in a currency triangle are traded and liquid, a no-arbitrage argu-
ment requires the following to hold for the correlation between USD/AUD and USD/JPY rates – see, 
for example, Haug (1996) or Lopez and Walter (2000): 

(7)
ρ USD

AUD
,USD
JPY

=
σ2

USD
AUD

+ σ2
USD
JPY

− σ2
AUD
JPY

2σ USD
AUD

σUSD
JPY

All variables on the right-hand side of the equation can be inferred from the option market. We discard 
any correlation skew and focus on the ATM options in our application. To construct a full correlation 
matrix that also includes pairs of currencies with illiquid option markets, we collect a blend of market-
implied and historical correlations into a candidate correlation matrix. This matrix does not necessarily 
have the consistency properties (i.e. invertibility) required to be used in simulation. We therefore use 
a procedure from Higham (2002) to find a “nearest consistent correlation matrix” which can be used 
for our simulation procedure. 

There does not seem to be a strong academic consensus on whether traded FX correlations actually 
contain information beyond what is present in the price history. Lopez and Walter (2000) find implied 
correlations useful in forecasting observed correlations, but also find that it does not fully incorporate 
all information in the historical data. We find it interesting to track a model based on market-implied 
correlations alongside models based on historical correlations. 
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Simulation setup

We work with option volatilities on a one-year horizon and set up the simulation so that each FX rate 
has an expected value equal to the one-year forward rate. The Monte Carlo simulation is implemented 
as follows: we repeat the instructions below n = 100,000 times (as mentioned, for this study we use 
USD as the base currency):

•	 Draw a vector X from a multivariate Gaussian distribution with our estimated correlation matrices. 
Transform this vector to correlated uniforms by applying the univariate normal cumulative density 
function (CDF).

•	 For each FX rate, transform the uniform to a sampled outcome Y by applying an inverse CDF: 

•	 For the forward-looking method: the market-implied empirical inverse CDF 

•	 For a standard model: the inverse CDF of the normal distribution

•	 Revalue the portfolio (in the base currency) with the new FX rates Y and calculate profits and losses 
(P&L) versus the forward value of today’s portfolio. 

Portfolio analytics
At the end of June 2012, the Fund’s strategic benchmark for fixed income, set by the Ministry of 
Finance, was expanded to include government bonds for all currencies in the Barclays Global Aggregate 
index. Ten emerging-market currencies were added to the benchmark as a result, having a combined 
weight of 5.9 percent at the time of implementation. Inclusion of EM bonds may lead to increased 
short-term currency risks when a developed-market currency is used as the reference currency. The 
reference currency used here is USD. 

In this section, we look at some analytics for the currency composition of the Fund’s new fixed-income 
benchmark as of 2 July 2012. The total value was NOK 1,428 billion at the end of the second quarter of 
2012. It is important to note that this analysis does not take into account any credit or government-bond 
risks; it looks at FX risks in isolation. The currency composition of the new benchmark is shown in 
Figure 11. 

Figure 11. Currency composition of the fixed-income benchmark (02/07/2012).
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With this simulation setup, we can compare risk models. In Figure 12, we show the distributions 
one year ahead produced by four different simulation runs. In two of them, we use option-market 
information for the single-currency distributions. In the first, historical correlations over a short window 
are used, while the second uses correlations as implied by the market. Two normally-distributed models, 
one using a short, daily-frequency data window and the other using a longer, weekly-frequency data 
window, are run as benchmarks. 
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Figure 12. Risk model comparison (02/07/2012).
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Two observations are apparent from the figure. First, the option market is pricing a much heavier 
downside tail for the portfolio than the normal models calculate. Second, for this snapshot there is not 
a large difference between a model using implied versus historical correlations. Standard risk statistics 
run on the positions are shown in Table 1. VaR84 indicates Value-at-Risk, the negative of the value at 
the 16th percentile of the P&L distribution; ES84 is taken to be the expected shortfall over the 16th 
percentile, the expected value of losses should losses below the VaR84 occur. 

Table 1. Standard risk statistics, USD billion.

VaR84 ES84 VaR95 ES95 VaR99 ES99

Implied Vol – Historical Corr 14.3 25.2 28.4 35.6 40.3 44.9

Implied Vol – Implied Corr 13.7 23.6 26.4 33.3 37.7 42.3

Normal – 150 Weeks 12.6 18.4 19.8 24.2 27.0 30.1

Normal – 60 days 10.6 15.5 16.8 20.5 22.9 25.8

For the percentile-based risk statistics close to levels usually reported by fund managers (standard 
deviation is equal to the VaR84 statistic when a normal model is used), the option-implied risk statistics 
are 10-40 percent higher. The differences increase as we go further out into the tail. The much higher 
expected shortfall statistics reflect the heavier tails modelled by the option-implied method: informally, 
the ES84 statistic shows that, in the worst year out of six, the drawdown in portfolio value is expected 
to be 30-60 percent more than standard models would indicate. 

Figure 13. Implied distribution, with and without EUR (02/07/2012).
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It is worth highlighting that the tail risk in Figure 12 is higher than what we would expect in a less 
turbulent period for the markets. The market is currently pessimistic about EUR, which shows up 
as a higher implied tail risk. This is illustrated in Figure 13, where we compare the distribution of the 
current benchmark currency composition to a benchmark where EM currencies and the USD position 
are held as today and the EUR holdings are distributed to the other developed-market currencies pro 
rata according to their current weight in the benchmark.
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Figure 14. Tails of P&L distribution, varying amounts of EM (02/07/2012).

Without Euro With Euro

0.00

0.01

0.02

-50 -50

Probability densities (option implied, historical correlations)

USD billion

de
ns

ity

Percent EM

0
6
12
30

Finally, we illustrate the effect on currency risk of varying the fraction of the benchmark invested 
in emerging-market bonds. We consider two base portfolios without EM bonds: one including EUR 
and one without (following the same procedure as before). EM currency exposure is then increased 
pro rata according to the weights in Figure 11. The tails of the resulting distributions are shown in 
Figure 14. Increasing the EM allocation increases the tail risk for both portfolios, but the impact is 
larger for the portfolio not holding EUR. The impact on the non-EUR holding portfolio is in line with 
what we would expect from adding EM currencies to a developed-markets portfolio in a more normal 
market environment. It should also be noted that the EM portfolio does not include RUB or BRL, 
which might be included in the Fund’s benchmark at a later stage. These currencies are among the 
EM currencies that have the highest volatility skews. Adding these currencies to the EM portfolio 
will further increase the downside tail. 

FX drawdowns and other risky assets
Analysis of tail risks for currency positions is particularly important in a total portfolio context, as 
episodes of simultaneous weakening of higher-yielding currencies have a tendency to occur at the 
same time that risky assets such as equities or corporate bonds sell off (see Ilmanen (2011) for 
more detail). This is illustrated in Figure 15 where we show the performance of the S&P 500 and the 
Barclays US Corporate High Yield index against the USD performance of an equal-weighted basket 
of four EM currencies and their measured average pairwise correlation. 

The chart shows that, as the 2008 selloff takes hold, EM currency correlations rise and the value of 
the currency basket is reduced in tandem with the credit and equity indices. The implication is that, 
although the improvement in expected long-term risk/reward might be positive from adding investments 
in emerging-market bonds and equities, one should expect sharper short-term drawdowns in the 
USD (and presumably NOK) value of the portfolio in periods of distress due to the added tail risks. 

 
Figure 15. EM basket performance and average pairwise correlation.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

40

60

80

100

120

140

20
07

‐0
3

20
07

‐0
4

20
07

‐0
5

20
07

‐0
6

20
07

‐0
7

20
07

‐0
8

20
07

‐0
9

20
07

‐1
0

20
07

‐1
1

20
07

‐1
2

20
08

‐0
1

20
08

‐0
2

20
08

‐0
3

20
08

‐0
4

20
08

‐0
5

20
08

‐0
6

20
08

‐0
7

20
08

‐0
8

20
08

‐0
9

20
08

‐1
0

20
08

‐1
1

20
08

‐1
2

20
09

‐0
1

20
09

‐0
2

20
09

‐0
3

20
09

‐0
4

20
09

‐0
5

20
09

‐0
6

Basket of MXN,BRL,INR,RUB (Left) S&P500 (Left)
Barclays US Corporate High Yield (Left) Average pairwise correlation (Right)



14 NBIM  Discussion noTE

Extension and further work
We do not provide a historical test for whether the implied tail-risk estimates correspond better than 
the results of a standard model to what is subsequently realised. Further work in this direction might 
reveal whether we need to include explicit modelling of time-varying risk premiums to get better risk 
estimates from an option-implied risk model. 

The model as described allows for heavy tails for single FX rates. However, as the dependence 
structure is modelled using a Gaussian copula, strong tail dependencies will not be modelled. Refining 
the dependence modelling would be an obvious extension to the method. 

The generic process described in this note, where we extract implied probability distributions for assets 
from actively traded option markets and connect them via a measure of dependence, is applicable 
to other asset classes as well. We are currently working on a similar model based on prices in the 
option markets for single equities. Option-implied modelling for an equities portfolio introduces an 
additional set of challenges, such as thinner data coverage (many stocks do not have active option 
markets) and dimensionality (the Fund’s equity portfolio and benchmark combined count over 8,000 
stocks). Additionally, there is empirically a strong downside tail dependence within the equity asset 
class that should be considered.

We have found the risk-modelling insights gained from working with option data to provide additional 
useful information. Future initiatives may extend our efforts into interest rates, credit and cross-asset 
modelling as well. 
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Appendix – Implied volatility from  
vanna-volga approximation
Recall that the x’s are the weights of the three strikes we have implied volatility data for, where the 
sum of the weights is 1. The CBS function is the standard formula for calculating the value of a currency 
option. The analytical solution in terms of the weights for the equation set in the main text is: 

x1(t;K ) =
ν(t;K )

ν(t;K1)

ln K2
K ln K3

K

ln K2
K1

ln K3
K1

x2(t;K ) =
ν(t;K )

ν(t;K2)

ln K
K1

ln K3
K

ln K2
K1

ln K3
K2

x3(t;K ) =
ν(t;K )

ν(t;K3)

ln K
K1

ln K
K2

ln K3
K2

ln K3
K1

The greeks (the partial derivatives) are as follows

∂2CBS

∂σ2
(t;K ) =

ν(t;K )

σ
d1(t;K )d2(t;K )

∂2CBS

∂σ∂St
(t;K ) = −ν(t;K )

Stσ
√
τ
d2(t;K )

d2(t;K ) = d1(t;K )− σ
√
τ

where

ν(t;K ) =
∂CBS

∂σ
(t;K ) = St exp

−r f τ √τϕ (d1(t;K ))

d1(t;K ) =
ln St

K + (rd − r f + 1
2σ

2)τ

σ
√
τ

ϕ(x) = Φ′(x) =
1√
2π

exp−
1
2
x2

We can use the fact that we know the implied volatility for the options in the replicating portfolio. 
This means that the following relation will hold: 

C (K ) = CBS(K ) +
3∑

i=1

xi (K )
[
CMKT (Ki )− CBS(Ki )

]

CMKT is the market value of the options in the replicating portfolio. CBS is the value of the options 
calculated with a flat volatility. When we have the calculated the price C(K) it is possible to calculate an 
approximate implied volatility at the unquoted strike K. The approximation is done using a second-order 
Taylor expansion, and is done around s. First we develop the options in the replicating portfolio around 
s. Then we develop the unquoted option price C(K) around s: 
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C(K) ≈ CBS (K) +
3∑

i=1

xi (K)

[
ν(Ki )(σ(Ki ) − σ) +

1

2

∂2CBS

∂σ2
(Ki )(σ(Ki ) − σ)2

]

C(K) − CBS (K) ≈ ν(K)(σ(K) − σ) +
1

2

∂2CBS

∂σ2
(K)(σ(K) − σ)2

ν(K)(σ(K) − σ) +
1

2

∂2CBS

∂σ2
(K)(σ(K) − σ)2 ≈

3∑
i=1

xi (K)

[
ν(Ki )(σ(Ki ) − σ) +

1

2

∂2CBS

∂σ2
(Ki )(σ(Ki ) − σ)2

]

The last equation is a second-degree equation in s(K). The solution of this equation is:

σ(K) ≈ σ +
−σ +

√
σ2 + d1(K)d2(K)(2σD1(K) + D2(K))

d1(K)d2(K)

D1(K) =
ln

K2
K

ln
K3
K

ln
K2
K1

ln
K3
K1

σ25∆p +
ln K

K1
ln

K3
K

ln
K2
K1

ln
K3
K2

σATM +
ln K

K1
ln K

K2

ln
K3
K2

ln
K3
K1

σ25∆c

D2(K) =
ln

K2
K

ln
K3
K

ln
K2
K1

ln
K3
K1

d1(K)d2(K)(σ25∆p − σ)2 +
ln K

K1
ln

K3
K

ln
K2
K1

ln
K3
K2

d1(K)d2(K)(σATM − σ)2

+
ln K

K1
ln K

K2

ln
K3
K2

ln
K3
K1

d1(K)d2(K)(σ25∆c − σ)2

which is the vanna-volga expression used.
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