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Abstract

A flexible forecast density combination approach is introduced that can deal
with large data sets. It extends the mixture of experts approach by allowing
for model set incompleteness and dynamic learning of combination weights. A
dimension reduction step is introduced using a sequential clustering mechanism
that allocates the large set of forecast densities into a small number of subsets
and the combination weights of the large set of densities are modelled as
a dynamic factor model with a number of factors equal to the number of
subsets. The forecast density combination is represented as a large finite
mixture in nonlinear state space form. An efficient simulation-based Bayesian
inferential procedure is proposed using parallel sequential clustering and filtering,
implemented on graphics processing units. The approach is applied to track
the Standard & Poor 500 index combining more than 7000 forecast densities
based on 1856 US individual stocks that are are clustered in a relatively small
subset. Substantial forecast and economic gains are obtained, in particular, in
the tails using Value-at-Risk. Using a large macroeconomic data set of 142 series,
similar forecast gains, including probabilities of recession, are obtained from
multivariate forecast density combinations of US real GDP, Inflation, Treasury
Bill yield and Employment. Evidence obtained on the dynamic patterns in the
financial as well as macroeconomic clusters provide valuable signals useful for
improved modelling and more effective economic and financial policies.
∗The present paper should not be reported as representing the views of Norges Bank.

The views expressed are those of the authors and do not necessarily reflect those of Norges
Bank. This paper is a substantially revised and extended version from an earlier paper by the
same authors, see Casarin et al. (2017). The authors are indebted to John Geweke, Lennart
Hoogerheide and Frank Schorfheide for helpful comments.
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1 Introduction

Forecasting with large sets of data is a topic of substantial interest to academic

researchers as well as to professional and applied forecasters. It has been studied

in several papers (e.g., see Stock and Watson, 1999, 2002, 2005, 2014, and

Bańbura et al., 2010). The recent fast growth in (real-time) big data allows

researchers to forecast variables of interest more accurately (e.g., see Choi and

Varian, 2012; Varian, 2014; Varian and Scott, 2014; Einav and Levin, 2014).

Stock and Watson (2005, 2014), Bańbura et al. (2010) and Koop and Korobilis

(2013) suggest that there are also potential gains from forecasting using a large

set of forecasts.

However, forecasting with large data sets, many forecasts and high-dimensional

models requires new modelling strategies, efficient inference methods and extra

computing power possibly resulting from parallel computing. We refer to

Granger (1998) for an early discussion of these issues.

We propose a flexible parametric forecast density combination approach with

dynamic learning that can deal with large data sets. It extends Billio et al. (2013)

and McAlinn and West (2018) in several directions.

In terms of methodology we introduce three innovations. First, we use the

mixture of experts and/or smoothly mixing regression approaches (Jacobs et al.,

1991, Jordan and Jacobs, 1994, Jordan and Xu, 1995, Peng et al., 1996, Wood

et al., 2002, Geweke and Keane, 2007, Villani et al., 2009, Norets, 2010) and

extend these by allowing the combination weights to be dependent between

models as well as to learn over time. Learning about model set incompleteness

is also specified. In this context a diagnostic analysis is presented to signal
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particular types of missing information.

Second, a dimension reduction step is introduced using a sequential clustering

mechanism that allocates the large set of forecast densities into a small number

of mutually exclusive subsets making use of such time-varying density features

as past forecast accuracy, volatility and tail behaviour. The dimension reduction

further involves modelling the combination weights of the large set of densities as

a dynamic factor model with a number of factors equal to the number of subsets

and these factors learn from past forecasting performance. The combination

weights are mapped to the unit interval and interpreted as a convex set of

probabilistic weights used for the construction of the large finite mixture of

combination densities. Our approach contributes to the time series literature on

a bounded domain, see, e.g., Aitchinson and Shen (1980) and Aitchinson (1982),

and applies it to macroeconomic and finance problems extending the intuition

in Stock and Watson (2014).

Third, an efficient simulation-based Bayesian inferential procedure is

proposed. Given that the model can be represented as a nonlinear state

space model where the measurement equation consists of a large finite mixture,

parallel clustering and parallel sequential Monte Carlo filters are used for efficient

numerical evaluation. Here, we follow the recent trend of using graphics

processing units (GPU) for general, non-graphics, applications: the so-called

general-purpose computing on GPU (GPGPU).

Using large data sets, the proposed approach is applied to two well-known

problems in economics and finance. In the first example we use more than

7000 forecast densities based on 1856 US individual stock return series and four

clusters to construct a combined forecast density of a replication of S&P 500
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returns over the sample 2007-2009 and estimate several features of this density.

We emphasise that our method allows for a time-varying composition of the

four clusters letting individual stocks to switch across them or eventually exit

the model set, for example, after a default as in the Lehman Brothers case.

Compared to the no-forecast ability benchmark and forecasts from individual

models estimated on the aggregate index, we find substantial accuracy gains in

forecasting means, volatilities and tail events, in particular, with respect to the

economic value of such events like Value-at-Risk. The observed dynamic patterns

in the cluster-based weights provide valuable signals for improved economic and

financial modelling and policy analysis.

In the macroeconomic example, we consider the extended Stock and Watson

(2005) dataset, which includes 142 series sampled at a quarterly frequency from

1959Q1 to 2011Q2. Assuming the existence of 5-7 clusters, we identify two

clusters related to real activities; one cluster related to prices; and one cluster

related to financial variables. The other clusters contain the remaining series.

As a result we find substantial gains in point and joint density forecasts of US

real GDP, GDP deflator, Treasury Bill yield and Employment over the last

25 years for all horizons from one-quarter ahead to five-quarters ahead. The

highest accuracy is achieved when the four series are forecasted simultaneously

using our combination schemes with cluster weights based on log score learning.

A dominant cluster does not exist but we note that the cluster that includes

Exports, Imports and GDP deflator receives a relatively large weight. Using the

complete forecast densities evidence is obtained on the probability of recession

over time. Diagnostic analysis concerning model set incompleteness provides

valuable signals that additional gains may be obtained with a more detailed
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cluster grouping and different performance scoring rules for weights associated

with models inside a cluster. This is left as a topic for further research.

The contents of this paper is structured as follows. Section 2 provides details

of the methodological contributions of our approach. Section 3 contains novel

empirical applications using a large set of US stocks and the Stock and Watson

(2005) macroeconomic data set. Section 4 presents conclusions and suggestions

for further research. The Supplementary Material contains details on a practical

user guide, and more on data, derivations and results.

2 Forecast density combinations with model
set incompleteness and dynamic learning for
large data sets

Basic practice in macroeconomic and financial forecasting is to make use of

a weighted combination of forecasts from many sources, say experts, models

and/or large micro-data sets. More formally, let yt be the variable of interest

and assume that some form of forecast values ỹ1t, . . . , ỹnt is available with a set of

fixed weights w1t, . . . , wnt. Basic practice is to make use of the linear combination

w1tỹ1t + . . .+ wntỹnt (1)

and to assume it is a good forecast approximation to the variable of interest yt.

A major purpose of academic and professional forecasting is to give this practice

a formal probabilistic foundation in order to quantify the uncertainty of such

forecast density features as means, volatilities and tail behaviour. The literature

on this topic is abundant, some basic references that are related to our approach
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are: Billio et al. (2013), Aastveit et al. (2018), McAlinn and West (2018) and for

a general survey on the field of forecast combinations we refer to Aastveit et al.

(2019).

In this paper we give the practice, specified in equation (1), a stochastic

interpretation using mixtures. Let ỹt = (ỹ1t, . . . , ỹnt)
′ denote the set of forecasts

from n different models, we assume the forecast probability of the variable of

interest yt given ỹt, is a discrete mixture of conditional probabilities of yt given ỹit

coming from n different models. The mixture weights wt = (w1t, . . . , wnt)
′ form

a random partition of the unit interval and are now interpreted as probabilities.

We specify such a probability model, in terms of densities, as

f(yt|ỹt) =
n∑
i=1

witf(yt|ỹit). (2)

We define f(yt|ỹt) as the fundamental combination density, see also Aastveit

et al. (2019). The most simple form of this would be a degenerate one with fixed

weights and a point mass at ỹit instead of a density f(·|ỹit). The purpose of this

section is to make the approach operational to financial and macroeconomic

models allowing for dynamic learning about mixture weights and model set

incompleteness using large data sets.

2.1 Mixtures with model set incompleteness

Let the forecast densities from the n models be denoted as f(ỹit|Iit), i = 1, . . . , n,

where Iit is the information set of model i available at time t−1. We complement

the theoretical analysis using as running example a case from finance where we

consider four models: a Normal GARCH(1,1) model with a small and a large
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variance and a t−GARCH(1,1) model with low and high degrees of freedom.

As data we consider 1856 financial series with the aim to construct a combined

forecast density of a replication of the S&P500 index and study its features like

location, density shape and tail behaviour. For convenience, we do the analysis

for one variable of interest but we emphasise that in the empirical analysis we

also make use of a second case study which refers to a macroeconomic model

with four joint variables of interest.

Given the combination model of equation (2) and the forecast densities

from the n models, one can specify the marginal forecast density of yt as a

discrete/continuous mixture,

f(yt|It) =
n∑
i=1

wit

∫
f(yt|ỹit)f(ỹit|Iit)dỹit (3)

where It is the joint set of information on all models. The numerical evaluation

of (3) is relatively simple in case the forecast densities f(ỹit|Iit) of the different

models are known (say Normal GARCH(1,1) and Student t−GARCH(1,1)) and

further the combination density f(yt|ỹit) and the weight density are normal.

Using some well known MCMC method, one can generate forecast draws from the

n different models which are inserted in the combination model. The densities

are then combined by using draws from a normal weight density.

We make this approach operational to more realistic environments in finance

and macroeconomics. A first step is to introduce time-varying model set

incompleteness by specifying a Gaussian mixture model for the right hand side
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of equation (2) as:

f(yt|ỹt, σ2
1t, . . . , σ

2
nt) =

n∑
i=1

witN (yt|ỹit, σ2
it), (4)

where σ2
it for i = 1, . . . , n and t = 1, . . . , T is specified to follow the stochastic

volatility process

log σ2
it ∼ f(log σ2

it| log σ2
i,t−1, σ

2
η). (5)

The vector (σ2
1t, . . . , σ

2
nt)′ indicates the potential size of the misspecification

in each of the combination models of the mixture. When the values of the

vector (σ2
1t, . . . , σ

2
nt)′ are large, the overall uncertainty is substantial. When this

uncertainty level tends to zero then the mixture of experts or the smoothly

mixing regressions model is recovered as limiting case as shown in the following

proposition.

Proposition 2.1 (Mixture representation under

model set incompleteness). Under standard regularity conditions (integrals

and summations exist) and given the information sets of all individual models,

the marginal forecast density of yt has the following discrete/continuous mixture

representation

f(yt|It, σ2
1t, . . . , σ

2
nt) =

n∑
i=1

wit

∫
N (yt|ỹit, σ2

it)f(ỹit|Iit)dỹit. (6)
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If the uncertainty level, controlled by σ2
it, i = 1, . . . , n, tends to zero, then

f(yt|It) −→
n∑
i=1

witf(yt|Iit). (7)

A proof is presented in the Supplementary Material.

2.2 Dimension reduction and dynamic learning

In order to construct forecast density combinations for large data sets, say time

series of several hundreds or thousand of observations, we introduce in this

section a dimension reduction and learning process.

Clustering of forecasts. Without dimension reduction, the number of latent

weights to estimate may be very large at every time period t which can be

computationally demanding. As a first step in the dimension reduction process,

the forecast densities of n series are clustered into m exclusive groups, using

features of the forecast densities as discussed before. This allows to deal with

model dependence, which is well documented in empirical studies but often

ignored in density forecasting. Therefore, forecast densities with a similar level

of dependence structure can be grouped together. Also, this grouping can change

over time, following a learning mechanism which is defined by a sequential

clustering rule. In such a way, even if the number of clusters is kept constant

over time, the compositions of the clusters vary.1 Details of the sequential

clustering rule are given later and in the Supplementary Material, Section S.2.

The clustering makes use of an allocation variable, ξijt, which takes the value
1We note that the number of clusters could also be considered to vary over time, but their

interpretation is then more difficult.
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1 if the i-th forecast density is assigned to the j-th cluster of densities and 0

otherwise. This gives an (n ×m) allocation matrix Ξt = (ξ1t, . . . , ξjt, . . . , ξmt),

with ξjt = (ξ1jt, . . . , ξijt, . . . , ξnjt)′ with typical element ξijt ∈ {0, 1}.

This clustering procedure also involves the construction of an n×m coefficient

matrix Bt, with the i-th row and j-th column element given by bijt ∈ R, which

is intended to show how each of the n forecasts contributes to the combination

of forecasts. For the specification of specific values of the coefficients bijt, we

propose two alternative strategies. In one strategy we assume that each model

contributes to the combination with a specific weight driven by a model-specific

forecasting performance with learning. Let njt = ∑n
i=1 ξijt be the number of

forecast densities in the j-th cluster at time t and let gijt be the log score (see

Mitchell and Hall, 2005 and the Supplementary Material) of the data series i at

time t, then:

bijt =


∑t
s=1 exp{gijs}/

∑n
i=1

∑t
s=1 exp{gijs} if ξijt = 1

0 otherwise
(8)

In order to compare the effect of learning with no-learning, we also consider

the case where all coefficients in the cluster have the same weight, which

corresponds to set:

bijt =


1/njt if ξijt = 1

0 otherwise.
(9)

Modelling large set of weights as a dynamic factor model. We start

to specify latent cluster weights vt = (v1t, . . . , vmt)′ as a basic m-variate normal
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random walk learning process

vt = vt−1 + ηt, ηt
iid∼ Nm(0m,Σ). (10)

As a next step we specify a large set of n weights as linear combinations of the

cluster weights

xt = Btvt (11)

with the individual weights given as xit = ∑m
j=1 bijtvjt, i = 1, 2, . . . , n. The model

of (10) and (11) is a dynamic factor one, with perfect factors. That is, there is

no noise in the connection between xt and vt. The cluster weights vt are now

interpreted as latent factors with factor weights given as Bt. In this way, both

dimension reduction and dynamic learning is specified.

It is seen from equation (11) that the n×1 vector xt is a linear combination of

normally distributed random variables with the multivariate normal distribution:

xt ∼ Nn(Btvt−1,BtΣB′t) which is degenerate in the case of an equal weight

matrix Bt.

Logistic transformation of the n-dimensional latent weights xt to the

(n−1) simplex. We make use of an auxiliary (n−1) vector qt which is defined

as xt in deviation from its last value xnt. That is, qt = Dxt where the (n−1)×n

matrix D is given by D = (In−1|−ιn−1), with In−1 equal to the (n−1)×(n−1)

identity matrix, and ιn−1 is the (n−1)×1 vector containing only ones and there

is singularity, see the Supplementary Material Section S.1 for details. Map the

(n−1) vector qt to the (n−1) dimensional simplex using a logistic transformation

so that the resulting weights can be interpreted as a convex set of probabilistic
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Dimension of the latent weights and factors
Elements in m n n− 1
[0,1] wt

wit=w̃it (i=1,2,...,n−1)←−−−−−−−−−−−−−
wnt=1−

∑n−1
i=1 w̃it

w̃t

↑ w̃t = g(qt)

(−∞,∞) vt
xt=Btvt−−−−−→ xt

qt=Dxt−−−−→ qt

Table 1: Transformations diagram between latent weights and factors; wt and
w̃t have logistic normal distributions; vt, xt and qt have multivariate normal
distributions.

weights, denoted by the vector wt and again there is singularity since once we

have w1t, . . . , w(n−1)t we also known wnt. Thus, this transformation, indicated

by the function g(.) goes from (n − 1) elements from qt in Rn−1 to the (n − 1)

vector w̃t = (w1t, . . . , w(n−1)t)′, defined on the simplex Sn−1.

We present the different steps in the transformation diagram of Table 1 going

counterclockwise from the random walk cluster weights vt shown at the bottom

left to the large set of weights xt, next going to the auxiliary (n − 1)-vector qt

and then taking the logistic transformation step g(qt) on the vertical line which

yields the (n − 1) vector w̃t that is defined on the simplex of large dimension.

Finally, the complete n-dimensional weight vector wt is listed in the middle of

the top line.

As a next result we present the distribution of w̃t in the following proposition.

Proposition 2.2 (Logistic normal distribution of weights w̃t). Let

the n × 1 vector xt = Btvt have a multivariate normal distribution: xt ∼

Nn(Btvt−1,BtΣB′t). Define the (n− 1) vector w̃t as:

wit = exp(xit − xnt)∑n
i=1 exp(xit − xnt)

, i = 1, 2, . . . , n− 1. (12)
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Then w̃t follows a logistic normal distribution:

w̃t ∼ Ln−1(DBtvt−1,DBtΣB′tD′), where wnt = 1−∑n−1
i=1 wit.

A proof is presented in the Supplementary Material.

Probabilistic cluster weights in the m-dimensional space. Take the

cluster weights vt in deviation of their final value, that is, D(m−1)vt, where

D(m−1) has the same structure as the matrix D but it is now an (m − 1) ×m

matrix. Use the logistic transformation g(D(m−1)vt) in order to move D(m−1)vt

from Rm−1 to the simplex Sm−1 and label the resulting vector of probabilistic

cluster weights as z̃t = g(D(m−1)vt) with elements zjt, j = 1, 2, . . . , (m − 1)

with zmt = 1 − ∑m−1
j=1 z̃jt. In the empirical analysis we present results on the

time series pattern of these weights. The density function is given as z̃t ∼

Lm−1(D(m−1)vt−1,D(m−1)ΣD′(m−1)). There exists a nonlinear transformation

from the weights z̃t in the low dimensional space to the weights w̃t in the

high-dimensional space. One can use here the class preserving property of the

logistic normal distribution. For a general treatment and more details, we refer

to Casarin et al. (2017).

Remark on Diagnostic learning. A second way of learning is diagnostic

by making use of the variances of the disturbances in the combination models.

Here, the effect of misspecification or incompleteness of the model set is analysed.

We show results in the empirical section.
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2.3 State space representation and efficient filtering

algorithms

Given the results in the preceding section, we can now write the forecast density

combination model in nonlinear state space form. This representation allows us

to make use of algorithms based on sequential Monte Carlo methods such as

particle filters.

Proposition 2.3 (Nonlinear state space representation). The forecast

density combination model given in Section 2 has the following nonlinear state

space representation where the density of the measurement equation is a large

n−dimensional finite mixture of normals with time varying variances and the

density of the mixture weights is the logistic normal one from Proposition 2.2:

yt ∼
n∑
i=1

witN
(
ỹit, σ

2
it

)
(13)

w̃t ∼ Ln−1 (DBtvt−1,DBtΣB′tD′) , (14)

where w̃t = (w1t, . . . , wn−1,t)′, wnt = 1− w̃′tιn−1.

Distributions other than the logistic-normal can be used for weights such

as the Dirichlet distribution, but as noted in Aitchinson and Shen (1980) this

distribution may be too restrictive to be realistic in our analysis since the

components of a Dirichlet composition have a correlation structure determined

solely by the normalisation operation.

Next, we present a result that shows how this nonlinear state space model

can be written, for computational purposes, as a generalised linear model with

a nonlinear local level transition function when the real and simplex space of
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the random measures are equipped with suitable operations and norms.2 These

properties enable us to state the following result.

Corollary 2.1. Let st be a n−dimensional allocation vector, with st ∼

Mn(1,wt), where Mn(1,wt) denotes the multinomial distribution. Then, the

state space model given in Proposition 2.3 can be written as:

yt = ∑n
i=1(ỹit + εit)sit, εit ∼ N (0, σ2

it), (15)

sit =


1 with probability wit

0 otherwise
, (16)

wt = g(Dxt) (17)

xt = Btvt (18)

vt = vt−1 + ηt, ηt
iid∼ Nm(0m,Σ), (19)

where the function g is the logistic transformation given earlier and the matrix

Σ is given as diagonal with elements σ2
j , j = 1, 2, . . . ,m.

Algorithmic aspects: parallel sequential clustering and filtering.

The analytic solution of the filtering problem is generally not known, also

the clustered-based mapping of the forecast densities requires the solution of an

optimisation problem which is not available in closed form. Thus, we apply a

sequential numerical approximation of the two problems and use an algorithm

which, at time t, iterates over the following two steps:

1. Parallel sequential clustering computation of forecast densities.
2For details and background, see Aitchinson (1986) and Aitchinson (1992) and Billheimer

et al. (2001).
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2. Parallel sequential Monte Carlo approximation of weights and parameters

of the combination models.

For details and background on the parallel sequential filtering we refer to the

sequential Monte Carlo methods as in Casarin et al. (2015).

As regards the sequential clustering, we apply a parallel and sequential k-

means method with a forgetting factor for the sequential learning of the group

structure. K-means clustering is a method partitioning a set of n forecast

densities into m disjoints sets defined clusters. Given a definition of dependence,

the k-means will group forecast densities based on their distance. Moreover, the

sequential k-means algorithm is easy to parallelise which has been executed on

multi core CPU and GPU computing environments. Further details are given in

the Supplementary Material.

3 Empirical applications

As a first application we focus on the financial case, briefly discussed in the

previous section. We report results on several features of the combined forecast

density of a replication of the daily Standard & Poor 500 (S&P500) index,

including the economic value of tail events like Value-at-Risk. The second

application considers the extended Stock and Watson (2005) dataset, which

includes 142 series sampled at a quarterly frequency from 1959Q1 to 2011Q2.

Here we focus on obtaining a set of relevant clusters and we provide evidence on

forecast probabilities of a recession. In the financial and macroeconomic case,

we study the weight patterns of the clusters over time which provide valuable

signals that may lead to improved financial and macroeconomic modelling and
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forecasting.

3.1 Forecast density combination features and S&P500

index tracking

The econometrician interested in forecasting the density of this index has, at

least, two standard strategies. First, she can model the index with a parametric

or non-parametric specification and produce a forecast of it. Second, she can

forecast the price of each stock i and then aggregate them using an approximation

of the unknown weighting scheme.

We propose an extension of the second strategy based on the fact that many

investors, including mutual funds, hedge funds and exchange-traded funds, try

to replicate the performance of the index by holding a set of stocks, which are

not necessarily the exact same stocks included in the index. Apart from using

the S&P500 index, we collected 1856 individual stock daily prices quoted in

the NYSE and NASDAQ from Datastream over the sample March 18, 2002 to

December 31, 2009, for a total of 2034 daily observations for each individual

series. To control for liquidity we impose that each stock has been traded a

number of days corresponding to at least 40% of the sample size. We compute

log returns for all stocks. The S&P500 and the cross-section average statistics of

all series are reported in Table S.2 in section S.4 of the Supplementary Material.

We produce a density forecast for each of the stock returns and then apply our

forecast density combination scheme in order to compute the time patterns of the

weights of the different clusters and several other features of the combined density

forecast. The cluster weights indicate their relative forecasting importance over
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time. That is, a side output of our replication strategy is evidence of which sets

of assets track more accurately the aggregate index. This may lead to improved

investment policies, which is a topic for future research.

Model estimation.

To ease on the computational workload, we apply an optimisation method

to estimate the posterior modes of the parameters from a Normal GARCH(1,1)

model and a t-GARCH(1,1) model3 using rolling samples of 1250 trading days

(about five years) for each stock return:

yit = ci + κitζit, (20)

κ2
it = θi0 + θi1ζ

2
i,t−1 + θ2κ

2
i,t−1, i = 1, 2, . . . , n, (21)

where yit is the log return of stock i at day t, ζit ∼ N (0, 1) and ζit ∼ T (νi) for

the Normal and t-Student cases, respectively. The number of degrees of freedom

νi is estimated in the latter model. We produce 784 one day ahead forecast

densities from January 1, 2007 to December 31, 2009. Our out of sample period

is associated with high volatility driven by the US financial crisis and includes,

among others, events such as the acquisitions of Bern Stearns, the default of

Lehman Brothers and all events of the following week.

For further computational convenience, we specify for this case the parameter

matrix Bt in equation (9) as equal weights.4

Four clusters.

As first step, we apply the sequential cluster analysis to our forecast densities.
3Given our flat prior and large sample, these estimates are equivalent to maximum likelihood

estimates and also are approximate Bayes mean estimates
4See the macroeconomic case for a comparison with a different scoring rule.
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Figure 1: The figures present the average variance of the forecasts from the two
clusters for the Normal GARCH(1,1) models based on low (cluster 1, light blue) and
high (cluster 2, yellow) volatility in the left panel; and the average degree of freedom
of the forecasts from the two clusters for the t-GARCH(1,1) models based on low
(cluster 3, dark blue) and high (cluster 4, red) degrees of freedom in the right panel.
The degrees of freedom are bounded to 30.

We compute two clusters of forecast densities of the Normal GARCH(1,1) model

and two clusters for the t-GARCH(1,1) model. The first two are characterised by

low and high volatility; the third and the fourth ones are characterised by thick or

no thick tails.5 The cluster analysis is repeated every time a new forecast density

is produced and therefore the cluster composition varies over time. Figure 1

presents results about these features. The clusters for the Normal GARCH(1,1)

models differ substantially in terms of forecasted variance with cluster 1, with

the light blue colour, having a rather low constant variance value over the entire

period while cluster 2, with the yellow colour, has a variance more than double

in size including a shock in the latter part of 2008. For the t-GARCH(1,1) model

it is seen that cluster 3, with the dark blue colour, has a relatively constant thick

tail over the entire period while cluster 4, with the red colour, has an average

value of 10 for the degrees of freedom and in the crisis period the density collapses
5Low degrees of freedom occur jointly with a large scale and high degrees of freedom occur

jointly with a low scale.
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to a normal density with degrees of freedom higher than 30. The Lehman Brother

effect is visible in the figure, with an increase of volatility in the normal cluster

2 and a decrease in the degrees of freedom in the t-cluster 4.

Time varying cluster weight patterns.

Plots of the estimated cluster weights zjt, in the low dimensional simplex,

which were defined in Section 2 are shown in Figure 2. Clearly there is an

indication of a time varying pattern of the weights. One can distinguish three

different subperiods. In the subperiod before the crisis, the Normal GARCH

cluster with high volatility, cluster 2, and the t-GARCH cluster with low degrees

of freedom, cluster 3, have almost equal high weights while clusters 1 and 4 play

a much less important role. In the crisis period of 2008, cluster 3 receives almost

all the weight with clusters 1 and 2 almost none. Some of the assets lead the large

market decrease in that period. This results in very fat tailed densities and our

combination scheme takes advantage of this information and assigns to cluster 3

more weight. In the period after the Lehman Brothers collapse cluster 3 receives

again a substantial weight while the normal cluster 2, with large variance, is

getting gradually more weight. Clearly time-varying fat tails are an important

feature.

We also make use of canonical correlations, see Hotelling (1936), in order

to show how the joint dependence among the weights has changed over time.

The canonical correlations of the weights of each cluster versus the others

are computed from the first one year of data, January 1, 2007 to December

31, 2007, and next we use an expanding window approach to the full sample

until December 31, 2009. As one may expect from the time series behaviour

of the individual cluster weights, the top-right panel in Figure 2 shows that

20



20070101 20080101 20090101 20091231

0

0.2

0.4

0.6

0.8

1

n1 n2 t1 t2

20080101 20090101 20091231
-30

-20

-10

0

10

20

30

40
n1,[n2,t1,t2] n2,[n1,t1,t2] t1,[n1,n2,t2] t2,[n1,n2,t1]

20070101 20080101 20090101 20091231
1

1.1

1.2

1.3

1.4

1.5

1.6
10-4

n1 n2 t1 t2

20070101 20080101 20090101 20091231

0.98

1

1.02

1.04

1.06

1.08
10

-4

Figure 2: Top-left: the mean logistic-normal weights for the two Normal GARCH
clusters, labeled in the graph “n1” and “n2”, and for the two t-GARCH clusters, labeled
in the graph “t1” and “t2”. Top-right: 1-year canonical correlations of the weights for
the clusters “n1”, “n2”, “t1” and “t2” respectively versus the other cluster weights
(between square brackets). Bottom-left: posterior mean estimates of incompleteness
measures in the four clusters in the scheme DCEW-SV. Bottom-right: average of the
posterior mean estimates of all model incompleteness measures.

major changes occur onward from the Lehman Brother default, in particular, for

clusters 2 and 3. We note that the correlation of cluster 2 with clusters 1 and 4

returns to the pre-crisis period; cluster 3 is more positively related to the other

clusters than before the financial crisis.

Model set incompleteness.

We measure incompleteness for the model set Density Combination with

Equal Weights and Stochastic Volatility, (DCEW-SV). Signals of model set

incompleteness are shown in the bottom panel of Figure 2. We compute the
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incompleteness contribution of each individual cluster as the average value of

the squared posterior residuals, see equation (15). It is seen that the Normal

GARCH cluster “n1” with low volatility and the t−Garch cluster “t2” with

high degrees of freedom have the higher average incompleteness and the Normal

GARCH cluster “n2” with high volatility and the t−Garch cluster “t1” with

low degrees of freedom have lower average incompleteness. This diagnostic

information confirms that clusters “n1” and “t2” give lower forecast accuracy.

In terms of time series patterns, incompleteness for the four clusters follows a

similar trend as the trend in the overall measure of incompleteness with a large

increase after Lehman Brothers events.6 We note that it is seen in Figure 2 that

cluster ”t2” has a larger weight than cluster ”n1” in the combination but it has

a worse fit. This result may be due to the misspecification feature.

We also plot an average estimate of the overall model incompleteness by

computing the posterior mean estimates for σ2
it and taking their average, that is

σ2
t = ∑n

i=1 σ
2
it/n. The average variance estimate has a 7% increase in September

2008, which is due to the default of Lehman Brothers and related following

events. Interestingly, the volatility does not reduce in 2009, a year with large

positive returns opposite the large negative returns in 2008.

Forecast accuracy of center and shape of the distribution.

We compare the performance of our approach with five different basic models

applied to the S&P500 log returns: a white noise model (or a random walk for

prices), often used as a main benchmark in equity premium forecastability; the

Normal GARCH(1,1) and the t-GARCH(1,1) models described above. In order
6We note that one may experiment with a larger set of individual models, see for example

Geweke and Durham (2012).
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to explore the sensitivity of our results for model set incompleteness in more

detail, we include the GJR-GARCH(1,1) model in Glosten et al. (1993) that

includes leverage effects in the model set. The GJR-GARCH is a richer model

than the standard GARCH and should fit the data better. In fact, leverage effect

is considered among the stylised facts of financial returns. So the added feature

may become relevant in our analysis. Finally, since it might difficult to know

which of the GARCH models perform better ex-ante, we apply also an equal

weight combination of the three GARCH models, labeled EW-GARCH.

RMSPE LS CRPS avQS-T avQS-L Violation
WN 1.852 -9.045 1.017 0.429 0.425 3.57%
Normal GARCH 1.852 -4.164∗∗ 0.956∗∗ 0.139∗∗ 0.195∗∗ 2.93%
t-GARCH 1.852 -2.738∗∗ 0.937∗∗ 0.118∗∗ 0.154∗∗ 2.55%
GJR-GARCH 1.852 -4.068∗∗ 0.955∗∗ 0.125∗∗ 0.158∗∗ 2.75%
EW-GARCH 1.853 -3.145∗∗ 1.018 0.144∗∗ 0.171∗∗ 2.80%
DCEW 1.812∗∗ 2.249∗∗ 0.911∗∗ 0.114∗∗ 0.149∗∗ 0.90%
DCEW-SV 1.816∗∗ 2.206∗∗ 0.913∗∗ 0.114∗∗ 0.149∗∗ 1.02%

Table 2: Forecasting results for next day S&P500 log returns. Bold numbers indicate
the best statistic for each loss function. One or two asterisks indicate that differences
in accuracy from the white noise (WN) benchmark are credibly different from zero
at 5%, and 1%, respectively, using the Diebold-Mariano t-statistic for equal loss.
The underlying p-values are based on t-statistics computed with a serial correlation-
robust variance, using the pre-whitened quadratic spectral estimator of Andrews and
Monahan (1992). The column “Violation” shows the number of times the realised
value exceeds the 1% Value-at-Risk (VaR) forecasted by the different models over the
sample.

Out-of-sample forecasting result are presented in Table 2. The first three

columns deal with location and shape features of the forecast densities. It is

seen that our combination schemes produce the lowest Root Mean Squared

Prediction Error (RMSPE) and Cumulative Rank Probability Score (CRPS) and

the highest Log Score (LS), see also Section S.3 of the Supplementary Material for
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more details. The results indicate that the combination schemes are statistically

superior to the no-forecastability WN benchmark. The Normal GARCH(1,1)

model, the t-GARCH(1,1) model and the GJR-GARCH(1,1) model fitted on

the index also provide more accurate density forecasts than the WN, but not on

point forecasting. For all three score criteria, the statistics given by the three

individual models are inferior to our combination schemes.

Tail estimates and their dynamic behaviour.

Apart from forecast accuracy in the center and of the complete shape of

the distribution, we investigate whether the results also possess valuable signals

about the tails. We consider two statistics that refer to left and right tails of

the forecast densities. These refer to weighted averages of Gneiting and Raftery

(2007) quantile scores that are based on quantile forecasts that correspond to

the forecast densities from the different models. In the Supplementary Material

it is shown that avQS-T emphasizes both tails and avQS-L the left tail of the

forecast density relative to the realization 1-step ahead. To study how the models

perform in the left tail forecasts over time, we consider the cumulative sum

of avQS-L and the most accurate model at observation t produces the lowest

cumavQS-Li,h,t. The fourth and fifth columns of Table 2 show results for tail

evaluation. Our schemes provides the lowest avQS-T and avQS-L statistics,

confirming the accuracy of the method in the tails of the distribution.

Figure 3 shows for the time series of the full sample the cumulative avQS-L

for the t-GARCH(1,1) model, the best ex-post GARCH model, the combination

of GARCH models and DCEW model set. We note that our method requires

some observations in the beginning to catch up with the other models. However,

from August 2007 when stock markets start to experience large stress, it provides

24



20070101 20080101 20090101 20091231

0

0.05

0.1

0.15

0.2
a b c

t-GARCH EW-GARCH DCEW

Figure 3: Cumulative left quantile scores described in formula S.10 (Appendix)
of the t-GARCH model, EW-GARCH model and DCEW. Timeline legend: a -
8/9/2007, BNP Paribas redemptions on three investment funds; b - 3/17/2008,
collapse of Bear Stearns; c - 9/15/2008, Lehman bankruptcy.

the most accurate tail forecasts. The gap between the three models increases

steadily over time and it becomes substantially larger after the collapse of Bear

Stearns. With the default of the Lehman brothers, the accuracy of all three

schemes reduces sharply until November/December 2008 when central banks

and governments from around the World started to take actions which reduced

the volatility in financial markets. Our DCEW, however, provides the lowest

statistic until the end of the sample.

Economic value of tail information.

As economic measure, we apply a Value-at-Risk (VaR) based measure, see

Jorion (2006). We compare the accuracy of our models in terms of violations,

that is the number of times that negative returns exceed the VaR forecast at

time t, with the implication that actual losses on a portfolio are worse than

had been forecasted. Higher accuracy results in numbers of violation close to

nominal value of 1%. Moreover, to have a gauge of the severity of the violations

we compute the total losses by summing the returns over the days of violation
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for each model. When looking to VaR violations, reported in the final column

of Table 2, the number for all individual models is high and above 1%, with the

WN higher than 3%. The dramatic events in our sample, including the Lehman

default and all the other features of the US financial crisis provide an explanation

for the result. It is important to note that the two combination schemes provide

the best statistics, with violations very close to the 1% theoretical value. The

property of our combination schemes to assign higher weights to the fat tail

cluster 3 helps to model more accurately the lower tail of the index returns and

covers more adequately risks.

Remark on computation time.

Details are presented in the Supplementary Material, in particular, Table S.6

compares the execution time of the GPU parallel implementation of our density

combination strategy and the CPU multi-core implementation. The results show

substantial gains due to GPU parallelisation.

3.2 Dynamic cluster weights and recession probabilities

in a large macroeconomic data set

We consider the extended Stock and Watson (2005) dataset, which includes 142

series sampled at a quarterly frequency from 1959Q1 to 2011Q2. A graphical

description of the data is given in Figure S.2 in the Supplementary Material.

The dataset includes only revised series and not vintages of real-time data.7 In

order to deal with stationary series, we apply the series-specific transformation

suggested in Stock and Watson (2005). We also re-scale the series to have zero
7See Aastveit et al. (2018) for a real-time application, with fewer series, of combined density

nowcasting and the role of model set incompleteness over vintages and time.
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mean.

Set-up of the experiment.

We split the sample size 1959Q3-2011Q2 in two periods. The initial 102

observations from 1959Q3-1984Q1 are used as initial in-sample period; the

remaining 106 observations from 1985Q1-2011Q2 are used as an out-of-sample

period.

We evaluate combined forecast densities of four core variables often

considered in monetary policy analysis: real GDP growth, Inflation measured

as percentage change in the price deflator, 3-month Treasury Bill rate and total

Employment for h = 1, . . . , 5 step-ahead horizons but restrict the presentation

to results for h = 1, 3, 5 horizons. For all variables we apply an AR(1) model

and the Dynamic Factor Model (DFM) with 5 factors described in Stock and

Watson (2012) as two benchmarks.

As described in Section 2, we consider two alternative strategies for the

specification of the parameter matrices Bt: equal weights and score recursive

weights, where in the second case we fix the log scores for the various horizons

h. We note that we keep the volatility of the incompleteness term constant, for

convenience. In the present analysis, the number of components matters more.

We construct combinations of forecast densities for eight different

specifications of the AR(1) model. That is, we make use of univariate versus

multivariate models; equal cluster weights versus weights based on past log

score performance, and 5 versus 7 clusters. Thus, we have eight cases, defined

as UDCEW5 (univariate density combination based on 5 clusters with equal

weights within clusters), MDCEW5 (multivariate density combination based

on 5 clusters with equal weights within clusters), UDCLS5 (univariate density

27



combination based on 5 clusters with recursive log score weights within clusters),

MDCLS5 (multivariate density combination based on 5 clusters with recursive

log score weights within clusters), UDCEW7 (univariate density combination

based on 7 clusters with equal weights within clusters), MDCEW7 (multivariate

density combination based on 7 clusters with equal weights within clusters),

UDCLS7 (univariate density combination based on 7 clusters with recursive log

score weights within clusters), MDCLS7 (multivariate density combination based

on 7 cluster with recursive log score weights within clusters).

Model estimation.

For each of the four variables we make use of a Gaussian autoregressive model

of the first order, AR(1),

yit = αi + βiyit−1 + ζit, ζit ∼ N (0, σ2
i ). (22)

We estimated the model using Bayesian inference and use a rather diffuse

informative Normal-Inverse-Gamma prior with means for αi and the β equal to

zero and variances equal to 100. For the variance σ2
i we use an Inverse-Gamma

with degrees of freedom equal to the number of lags (one) and intercept, that

is two. The AR models are estimated recursively and h−step ahead (Bayesian)

t−Student forecast densities are constructed using a direct approach extending

each vintage with the new available observation; see for example Koop (2003)

for the exact formula of the mean, standard deviation and degrees of freedom.

We also consider as a benchmark the DFM with 5 factors described in Stock
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and Watson (2012) as another benchmark. More precisely:

yt = Λf t + εft, Φ(L)f t = ηft, (23)

where the yt = (y1t, . . . , yKt)′ is a (K × 1) vector of variables (in our case

K = 4), f t = (f1,t, . . . , fr,t)′ is an r vector of latent factors, Λ is a K × r matrix

of factors loadings, Φ(L) is an (r × r) matrix lag polynomial, εft is a (K × 1)

vector of idiosyncratic components and ηrt is an r vector of innovations. In this

formulation the term Λf t is the common component of yt. Bayesian estimation

of the model described in equation (23) is carried out using Gibbs Sampling

given in Koop and Korobilis (2009).

Forecast accuracy of center and shape of the distributions

Table 3 reports the results to forecast real GDP growth, inflation measured as

the price deflator of GDP growth, 3-month Treasury Bills and total employment

for three different horizons and using three different scoring measures. For

all variables, horizons and scoring measures our methodology provides more

accurate forecasts than the AR(1) benchmark and the DFM benchmark. The

DFM model provides in most cases more accurate forecasts than the AR(1) for

real GDP and inflation at shorter horizons and gives mixed evidence for interest

rates and employment, but several of our combination schemes outperform this

benchmark. The combination that provides the largest gain is the multivariate

one based on seven clusters and log score weights within clusters (MDCLS7),

resulting in the best statistics 36 times out of 38 cases. In most of the cases, the

difference is statistically credible at the 1% level. This finding extends evidence

on the scope for multi-variable forecasting such as given in large Bayesian VAR,

29



see e.g. Bańbura et al. (2010) and Koop and Korobilis (2013). Fan charts in

Figure S.4 of the Supplementary Material show that the forecasts are accurate

even at our longest horizon, h = 5. The variable with low forecast gains is

inflation, although our method provides credibly more accurate scores at the (at

least) 5% credible level in several cases. Note that the multivariate combination

based on 5 clusters and equal weights yields also some accurate forecasts for the

3-month Treasury Bill rate, see cluster MDCEW5.

The forecast gains are similar across different horizons for the four variables,

that is around 10% relative to the AR benchmark in terms of RMSPE metrics

and even larger for the log score and CRPS measures.8 However, despite these

consistent gains over horizons, the logistic-normal weights in Figure 4 differ

across horizons. For example, when forecasting GDP growth (panel 1) cluster 4

has a weight around 20% at horizons 1 and 5, but half of this value at horizon

3, where clusters 2 and 5 have larger weights. The change is even larger for

inflation, where cluster 2 has a 20% weight at horizon 1 and increases to 40-45%

at horizon 5. The latter case also occurs when there is substantial instability

over time. Changes over horizons are less relevant for the other two forecasted

variables.

We conclude that combining joint model forecasts using multiple clusters

with cluster-based weights provides substantial forecast gains in most cases.

Of course, additional gains may be obtained by playing with a more detailed

cluster grouping and different performance scoring rules for weights associated

with models inside a cluster. This is left as a topic for further research.
8One would expect that RMSPE’s are monotonic decreasing over longer horizons. This is

not everywhere observed and is due to the fact of model misspecification.

30



Dynamic weight patterns.

We identify the clusters of forecast densities by applying our k-means

clustering algorithm. Specifically, our forecast densities are grouped in clusters

depending on mean, persistence and volatility properties. We are, in particular,

interested in the interpretation and behaviour of the clusters over the full sample

and consequently we impose that the cluster allocation of each model is fixed

over the forecasting vintages. Note that in the finance exercise this assumption is

relaxed. We assume alternatively 5 and 7 clusters.9 In the grouping, we identify

two clusters related to real activities; one cluster related to prices; and one cluster

related to financial variables. The other clusters contains the remaining series.

A detailed description of the 5 and 7 clusters is provided in Tables S.3-S.4 in the

Supplementary Material. From the analysis of the time patterns of the weights

in Figure 4 (see also Figure S.7 in the Supplementary Material for weights in the

univariate combination), we note that the weights for the univariate combination

are often less volatile than the weights in the multivariate approach. All figures

show that the sixth cluster has a large weight, but several other clusters have

also large positive weights, namely, clusters 2, 4, and 5 while clusters 1 and 7 do

not receive much weight. Apparently, variables such as Exports, Imports and

GDP deflator included in the sixth cluster play an important role in forecasting

GDP growth, inflation, interest rate and employment.

Figure S.8 in the Supplementary Material shows a typical output of the model

weights (bk,ijt, with k = 1, 2, 3, 4 representing one of the four macroeconomic

variables to be predicted) in the seven clusters. There are large differences across
9Interestingly, Stock and Watson (2012) find that a factor model with 5 factors provides

superior forecasts to factor models with less factors. We also investigate combinations with a
lower number of clusters, precisely 2 and 3 clusters, but forecasts are less accurate.
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Figure 4: In each plot the logistic-normal weights (different lines) for the multivariate
combination model are given. Rows: plot for the four series of interest (real GDP
growth rate, GDP deflator, Treasury Bills, employment). Columns: forecast horizons
(1, 3 and 5 quarters).
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clusters: for clusters 2, 4, 5 and 6, only a few models have most of the weights;

for the other clusters: 1, 3 and 7, similar weights occur across models. This

finding associated with the evidence on the weights in Figure 4 for the clusters

2, 4, 5 and 6 indicates that using recursive time-varying bk,ijt weights within

the clusters increases forecast accuracy for GDP growth relative to using equal

weights. Figure S.8 also indicates that the weights within clusters are much more

volatile than the cluster common component, indicating that individual model

performances change over time even if information in a given clusters is stable.

Evidence is similar for the GDP deflator and employment, but this finding

is less clear for bond returns. For this variable, MDCEW5 forecasts accurately.

Also note that cluster 3, which includes the 3-month Treasury Bills, has the

lowest weight in Figure 4. The explanation appears to be that the returns on

the 3-month Treasury Bills are modeled with an AR model, which is probably

less accurate for the series. Furthermore, the third cluster also contains stock

prices and exchange rates that are different from other series with very low

persistence and high volatility, making our combination to interpret this cluster

more like a noisy component.

We conclude that the logistic-normal weights contain relevant signals about

the importance of the forecasting performance of the models grouped in the

clusters. Some clusters receive large weight while others have only little weight.

Such a pattern may vary over long time periods. This may lead to the

construction of alternative model combinations for more accurate out-of-sample

forecasting and it is an interesting line of research to pursue.

Forecasting recession probabilities

As final exercise, we apply our combined forecasts to estimate turning
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points and economic downturns. Following the idea in the Survey of

Professional Forecasters (SPF) where individual economists are asked to report

the probability of a decline in the level of real GDP in the current quarter

and the following four quarters, we use our combination scheme to study the

probability of negative growth (i.e., GDP growth forecast below 0) from the first

to fifth ahead quarter. This measure appears to be a good estimate of recession

probabilities. Figure 5 plots the recursive probabilities of negative growth in the

first, third and fifth quarters from our combination scheme and compares it to

ex-post NBER recession dates. The combination succeeds to forecast the 90’s

and the recent US Financial Crisis, even if the latter one is called with a small

delay. In both cases, the recovery is well forecasted and our probabilities of

negative growth substantially decrease in the last quarter of NBER recessions or

at the maximum in the following one. But there is more uncertainty in the early

2000 recession, and one quarter ahead and five quarter ahead probabilities are

always below 0.5. Apart from our model based forecasts, expert commentators

also doubted on the definition of that recession.

Comparing the three horizons, the one quarter ahead seems the more timely

and precise; the three and five quarters ahead never reach 100% probability of

negative growth, confirming how difficult is to forecast a recession well ahead.

But in the last year of data, the probabilities increase substantially, even if a

NBER recession didn’t realize at the end. Our longer forecasts gave a large

probability of double-dip recession in 2011, supporting the debate on the fear of

such an event at the time, see Shiller (2010). However, when new information

came out and horizons shortened, forecasts also changed.
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Figure 5: One quarter ahead, three quarters ahead and five quarter ahead probabilities
over time of negative quarterly growth given by the the combination approach and
ex-post NBER recession dates.

4 Conclusions

We propose in this paper a flexible Bayesian parametric modelling approach

for the construction of combinations of forecast densities with dynamic learning

that can deal with large data sets in economics and finance. The approach is

based on clustering the set of forecast densities in mutually exclusive subsets

and on a hierarchical specification of the combination weights. This modelling

strategy reduces the dimension of the parameter and latent spaces and leads

to a more parsimonious combination model. We provide several theoretical

properties of the weights and propose the implementation of efficient and fast

parallel clustering and sequential combination algorithms for the estimation of

several features of the combined forecast densities.
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We applied the methodology to large financial and macro data sets and find

substantial gains in point and density forecasting for stock returns and four key

macro variables. In the financial application, we show how 7000 forecast densities

based on US individual stocks can be combined to replicate the daily Standard &

Poor 500 (S&P500) index return accurately. Evidence obtained on the dynamic

patterns of the cluster weights provide valuable signals which may be used for

improved modelling and effective financial strategies. Forecasts of the economic

value of tail events like Value-at-Risk are more accurate using combined forecast

densities with dynamic learning than basic benchmarks like Random Walks.

In the macroeconomic exercise, we show that combining model forecasts for

a set of joint variables with cluster-based weights increases forecast accuracy

substantially; weights across clusters are very stable over time and horizons, with

an important exception for inflation at longer horizons. Furthermore, weights

within clusters are very volatile, indicating that individual model performances

are more unstable, strengthening the use of density combinations. The combined

forecast densities give also accurate estimates of recession probabilities over the

data period considered.

The line of research presented in this paper can be extended in several

directions. For example, the cluster-based weights contain relevant signals about

the importance of the forecasting performance of each of the models used in the

these clusters. Some clusters have a substantial weight while others have only

little weight and such a pattern may vary over long time periods. This may

lead to the construction of alternative model combinations for more accurate

out-of-sample forecasting and improved policy analysis. Finally, we emphasise a

potential fruitful connection between our approach and research in the field of
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dynamic portfolio allocation, see Bãstürk et al. (2019).
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h=1 h=3 h=5
PE LS CRPS PE LS CRPS PE LS CRPS

RGDP
AR 0.647 -1.002 0.492 0.671 -1.007 0.501 0.682 -1.009 0.506
BDFM 0.649 -1.091 0.382∗∗ 0.654 -1.138 0.388∗∗ 0.655 -1.099 0.388∗∗

UDCEW5 0.644 -0.869 0.333∗∗ 0.657∗ -0.900 0.341∗∗ 0.655∗ -0.912 0.343∗∗

MDCEW5 0.630 -0.928 0.326∗∗ 0.638∗ -0.924 0.330∗∗ 0.636∗ -0.844 0.324∗∗

UDCLS5 0.773 -1.306 0.464 0.687 -1.339 0.446∗∗ 0.715 -1.380 0.481
MDCLS5 0.725 -1.145 0.505 0.581∗∗ -1.041 0.340∗∗ 0.557∗ -1.005 0.358∗∗

UDCEW7 0.649 -0.875 0.334∗∗ 0.655 -0.889 0.337∗∗ 0.657∗ -0.891 0.338∗∗

MDCEW7 0.642 -0.979 0.334∗∗ 0.652∗ -1.016 0.342∗ 0.654∗ -1.009 0.342∗∗

UDCLS7 0.646 -0.868∗ 0.332∗∗ 0.650∗ -0.918 0.341∗∗ 0.657∗ -0.914 0.342∗∗

MDCLS7 0.596∗ -0.586∗∗ 0.275∗∗ 0.607∗∗ -0.632∗∗ 0.288∗∗ 0.610∗∗ -0.634∗∗ 0.286∗∗

GDP deflator
AR 0.220 -0.933 0.356 0.206 -0.932 0.358 0.208 -0.932 0.361
BDFM 0.220 -0.584∗∗ 0.123∗ 0.206 -0.329∗∗ 0.115 0.208 -0.267 0.116
UDCEW5 0.230 -0.429 0.169 0.212 -0.422 0.165 0.213 -0.426 0.166
MDCEW5 0.204 -0.053 0.110∗ 0.203 -0.234 0.114 0.204 -0.194 0.113
UDCLS5 0.485 -1.085 0.354 0.259 -0.873 0.250 0.228 -0.892 0.252
MDCLS5 0.291 -0.280 0.309 0.143 0.031 0.125∗∗ 0.159 -0.226 0.147∗

UDCEW7 0.223 -0.425∗∗ 0.166∗∗ 0.207 -0.416 0.163 0.210 -0.416 0.164
MDCEW7 0.208 -0.214∗∗ 0.115∗∗ 0.197∗ -0.172∗∗ 0.109∗∗ 0.199 -0.200 0.111
UDCLS7 0.235 -0.507∗∗ 0.179∗∗ 0.224 -0.514 0.179 0.214 -0.475 0.171
MDCLS7 0.197 0.436∗∗ 0.098∗∗ 0.165 0.571∗ 0.083∗ 0.175 0.495 0.088

3-month Treasury Bills
AR 0.569 -1.058 0.363 0.518 -1.038 0.343 0.545 -1.041 0.358
BDFM 0.553∗ -1.190 0.359 0.516 -1.092 0.392 0.517 -1.089 0.401
UDCEW5 0.519 -0.778∗∗ 0.288∗∗ 0.509 -0.772∗∗ 0.283 0.525 -0.791∗∗ 0.292∗

MDCEW5 0.517∗∗ -0.764∗∗ 0.285∗∗ 0.502∗ -0.749∗∗ 0.276∗∗ 0.505∗∗ -0.751∗∗ 0.278∗∗

UDCLS5 0.740 -1.254 0.448 0.532 -1.210 0.381 0.584 -1.286 0.424
MDCLS5 0.710 -1.322 0.491 0.491∗∗ -1.143 0.346 0.572∗∗ -1.196 0.378
UDCEW7 0.525 -0.783∗∗ 0.289∗ 0.514 -0.768∗∗ 0.284∗ 0.522 -0.786∗∗ 0.289∗

MDCEW7 0.526 -0.775∗∗ 0.289∗ 0.515 -0.761∗∗ 0.283∗ 0.513 -0.766∗∗ 0.283∗

UDCLS7 0.512 -0.773∗∗ 0.284∗ 0.514 -0.770∗∗ 0.284∗ 0.521 -0.793∗∗ 0.289∗

MDCLS7 0.488∗∗ -0.725∗∗ 0.270∗∗ 0.515∗∗ -0.755∗∗ 0.283 0.496∗∗ -0.736∗∗ 0.275∗∗

Employment
AR 0.564 -0.995 0.447 0.597 -1.003 0.460 0.622 -1.009 0.468
BDFM 0.573 -1.064 0.336∗∗ 0.576 -1.192 0.333 0.582 -1.892 0.336
UDCEW5 0.585∗∗ -0.906∗∗ 0.308∗∗ 0.579 -0.955∗∗ 0.305∗∗ 0.587 -0.951∗∗ 0.311∗∗

MDCEW5 0.541∗∗ -0.926∗∗ 0.277∗∗ 0.558 -0.917∗∗ 0.285∗∗ 0.571∗∗ -0.790∗∗ 0.294∗∗

UDCLS5 0.752 -1.301 0.456 0.565 -1.305 0.426 0.628 -1.335 0.438
MDCLS5 0.654 -1.180 0.568 0.487 -1.010 0.338 0.569 -1.076 0.360
UDCEW7 0.535∗∗ -0.801∗∗ 0.283∗∗ 0.570 -0.854∗∗ 0.298∗∗ 0.583∗ -0.881∗∗ 0.306∗∗

MDCEW7 0.523∗∗ -0.735∗∗ 0.266∗∗ 0.565 -0.827∗∗ 0.288∗∗ 0.578∗ -0.885∗∗ 0.297∗∗

UDCLS7 0.552∗∗ -0.767∗∗ 0.289∗∗ 0.562 -0.849∗∗ 0.302∗∗ 0.588∗ -0.895∗∗ 0.313∗∗

MDCLS7 0.516∗∗ -0.452∗∗ 0.236∗∗ 0.507 -0.479∗∗ 0.237∗∗ 0.560∗∗ -0.680∗∗ 0.275∗∗

Table 3: Forecasting results for h = 1, 3, 5 steps ahead. For all the series: root
mean square forecast error (PE), logarithmic score (LS) and the continuous rank
probability score (CRPS). Bold numbers indicate the best statistic for each horizon
and loss function. One or two asterisks indicate that differences in accuracy versus
the AR benchmark are credibly different from zero at 5%, and 1%, respectively, using
the Diebold-Mariano t-statistic for equal loss. The underlying p-values are based on
t-statistics computed with a serial correlation-robust variance, using the pre-whitened
quadratic spectral estimator of Andrews and Monahan (1992).
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S.1 Proofs

S.1.1 Proof of Proposition 2.1

The marginal forecast density of the variable of interest yt is obtained by

integrating the joint density f(yt, ỹt|It, σ2
1t, . . . , σ

2
nt) with respect to the n forecast

random variables collected in the vector ỹt . This joint density is the product of

the conditional density of yt given ỹt, σ2
1t, . . . , σ

2
nt and the marginal multivariate

density of ỹt. For convenience, assume that this latter density is equal to the

product of the individual densities. This gives:

f(yt|It, σ2
1t, . . . , σ

2
nt) =

∫
R
f(yt|ỹt, σ2

1t, . . . , σ
2
nt)

n∏
j=1

f(ỹjt|Ijt)dỹjt (S.1)

Next, specify the conditional density as a finite mixture of normal combination

densities which yields:

f(yt|It, σ2
1t, . . . , σ

2
nt) =

∫
R

n∑
i=1

witN (yt|ỹit, σ2
it)

n∏
j=1

f(ỹjt|Ijt)dỹjt (S.2)

On the condition that integrals and summations exist, the order of integration

is changed. Using the property that all cases where i is not equal to j can be

ignored, one obtains

f(yt|It, σ2
1t, . . . , σ

2
nt) =

n∑
i=1

wit

∫
R
N (yt|ỹit, σ2

it)f(ỹit|Iit)dỹit (S.3)
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Now, by letting σ2
it → 0 for all i = 1, . . . , n, one has that f(yt|It, σ2

1t, . . . , σ
2
nt)

converges to

f(yt|It) =
n∑
i=1

wit

∫
R
δỹit

(yt)f(ỹit|Iit)dỹit =
n∑
i=1

witf(yt|Iit). (S.4)

S.1.2 Proof of Proposition 2.2

The proof consists of three main steps.

Start with the logistic transformation of xit and define:

wit = exp(xit)∑n
i=1 exp(xit)

i = 1, 2, . . . , n. (S.5)

Next, divide the numerator and denominator of the right hand side of the

equation above by exp(xnt), which yields:

wit = exp(xit − xnt)∑n
i=1 exp(xit − xnt)

i = 1, 2, . . . , n− 1, (S.6)

where wnt = 1 −∑n−1
i=1 wit, and define the auxiliary random vector qt as xt in

deviation from it’s last value xnt. Then one has:

qt =


x1t − xnt

...

x(n−1)t − xnt

 = Dxt. (S.7)

The (n−1)×n matrix D is given by D = (In−1|− ιn−1), with In−1 equal to the

(n− 1)× (n− 1) identity matrix, and ιn−1 is the (n− 1)× 1 vector containing

only ones and there is singularity. It is seen that w̃t = g(qt), where g(·) is a

3



one-to-one or bijective function.

Using xt = Btvt and vt = vt−1 + ηt, ηt
iid∼ Nm(0m,Σ) it follows that

qt = DBtvt ∼ Nn−1(DBtvt−1,DBtΣD′B′t). (S.8)

Second, the inverse transformation qt = g−1(w̃t) is given as;

qit = log
(
wit
wnt

)
= log(wit)− log

(
1−

n−1∑
i=1

wit

)
i = 1, 2, . . . , n− 1, (S.9)

with Jacobian matrix

∂qt
∂w̃t

=



w−1
1t 0 · · · 0

0 w−2
2t

...
... . . . 0

0 · · · 0 w−1
(n−1)t


+
(

1−
n−1∑
i=1

wit

)−1



1 1 · · · 1

1 1 ...
... . . . 1

1 · · · 1 1



=



w−1
1t 0 · · · 0

0 w−2
2t

...
... . . . 0

0 · · · 0 w−1
(n−1)t


+ w−1

nt × ι(n−1)×(n−1), (S.10)

where ι(n−1)×(n−1) is the (n− 1)× (n− 1) matrix containing only ones.

The determinant of ∂qt

∂w̃t
is

∣∣∣∣∣ ∂qt∂w̃t

∣∣∣∣∣ =
n∏
i=1

w−1
it , (S.11)
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where use is made the following determinant rule1

|A+ xy′| = |A| × (1 + y′A−1x),

with x = w−1
n × ι(n−1), y = ι(n−1) and

A =



w−1
1 0 · · · 0

0 w−2
2

...
... . . . 0

0 · · · 0 w−1
n−1


, (S.12)

where

|A| =
n−1∏
i=1

w−1
i (S.13)

(S.14)

A−1 =



w1 0 · · · 0

0 w2
...

... . . . 0

0 · · · 0 wn−1


(S.15)

(S.16)

y′A−1x = w−1
n

n−1∑
i=1

wi = 1− wn
wn

(S.17)

(S.18)

1 + y′A−1x = 1 + 1− wn
wn

= wn + 1− wn
wn

= 1
wn
, (S.19)

where pre- and post-multiplying by ι′n−1 and ιn−1 obviously means that one can
1see ? and for notatiaonal convenience the subindex t has been omitted
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compute the sum of all elements of the matrix A−1 (where this sum is here equal

to ∑n−1
i=1 wi), and where ∑n−1

i=1 wi = 1− wn, so that it follows that:

|A| × (1 + y′A−1x) =
n∏
i=1

w−1
i .

Note: for n = 2 one has

∂q

∂z̃
= w−1

1 + (1− w1)−1 = 1
w1(1− w1) = 1

w1w2
=

2∏
i=1

w−1
i .

For n = 3 one has

∂q

∂z̃
=


w−1

1 + w−1
3 w−1

3

w−1
3 w−1

2 + w−1
3



with

∣∣∣∣∣∂q∂z̃

∣∣∣∣∣ = (w−1
1 + w−1

3 )(w−1
2 + w−1

3 )− w−2
3 = w−1

1 w−1
2 + w−1

1 w−1
3 + w−1

2 w−1
3

= w3

w1w2w3
+ w2

w1w2w3
+ w1

w1w2w3
= w1 + w2 + w3

w1w2w3

= 1
w1w2w3

=
3∏
i=1

w−1
i ,

since w1 + w2 + w3 = 1.

6



Third, given that qt has the multivariate normal density function:

f(qt|DBtvt−1,DBtΣD′B′
t) = (2π)−(n−1)/2|DBtΣD′B′t|−1/2 ×

exp
(
−1

2 (qt −DBtvt−1)′ (DBtΣD′B′t)−1 (q −DBtvt−1)
)
, (S.20)

substitution of qt = log
(

w̃t
wnt

)
into (S.20) and multiplying with

∣∣∣ ∂qt

∂w̃t

∣∣∣ = ∏n
i=1w

−1
it

yields:

f(w̃t|DBtvt−1,DBtΣD′B′t) = (2π)−(n−1)/2|DBtΣD′B′t|−1/2
(

n∏
i=1

wit

)−1

×

exp
(
−1

2

(
log

( w̃t

wnt

)
−DBtvt−1

)′
(DBtΣD′B′t)−1

(
log

( w̃t

wnt

)
−DBtvt−1

))
.(S.21)

Q.E.D.

S.2 Algorithmic details and practical user

guide

The analytical solution of the optimal filtering problem is generally not known.

Also, the cluster-based mapping requires the solution of an optimisation problem

which is not available in analytical form. Thus, we apply a sequential numerical

approximation of the two problems and use an algorithms that at time t iterates

over the following two steps:

1) Parallel sequential clustering in order to determine the allocation matrix

Ξt = (ξ1t, . . . , ξmt), with ξjt = (ξj1t, . . . , ξjnt)′, j = 1, . . . ,m, the vector of

7



allocation variables ξjit ∈ {0, 1}, see the paper, Section 2.2.

2) Sequential Monte Carlo approximation that involve the parameters of the

combination models and the latent weights. Let θt ∈ Θ be the parameter

vector of the combination model, that is θt = (log σ2
c1t, . . . , log σ2

cmt). Let

w′t = (w′1t, . . . ,wnt) the vector of weights.

The details of the algorithms are given in the following subsections.

S.2.1 Sequential Clustering

The number of cluster in the K-means algorithm depends on the problem at

hand and has to be set by the researcher. Practical details on how we proceeded

in the finance and macroeconomic cases are given below in the practical user

guide in S.1.4. We start here with a brief exposition on the algorithmic steps.

Let cj0, j = 1, . . . ,m, an initial set of random points and let cjt, j = 1, . . . ,m

be the centroids, defined as

cjt = 1
njt

∑
i∈Njt

ψit,

where njt and Njt have been define in Section 2.2 of the main text. At time t+1

a new set of observations ψit+1 ∈ Rd, i = 1, . . . , n is assigned to the different m

groups of observations based on the minimum distance, such as the Euclidean

distance, ||·||, between the observations and the centroids cjt ∈ Rd, j = 1, . . . ,m.

Assume ji = arg min{j = 1, . . . ,m| ||ψit−cjt||}, i = 1, . . . , n, then the allocation

variable ξijt is equal to 1 if j = ji and 0 otherwise and the centroids are updated

8



as follows:

cjt+1 = cjt + λt(mjt+1 − cjt) (S.22)

where

mjt+1 = 1
njt+1

∑
i∈Njt+1

ψit (S.23)

and λt ∈ [0, 1]. Note that the choice λt = njt+1/(ncjt+njt+1), with ncjt = ∑t
s=1 njs,

implies a sequential clustering with forgetting driven by the processing of the

blocks of observations. In the application we fix λt = 0.99.

S.2.2 Parallel sequential clustering

The parallel implementation of the k-means algorithm can be described as

follows. Assume, for simplicity, the n data points can be split in P subsets,

Np = {(p− 1)np + 1, . . . , pnp}, p = 1 . . . , P , with the equal number of elements

nP . P is chosen according to the number of available cores.

1) Assign P sets of nP data points to different cores.

2) For each core p, p = 1, . . . , P

2a) find ji = arg min{j = 1, . . . ,m| ||ψit − cjt||}, for each observation

i ∈ Np assigned to the core p.

2b) find the local centroid updates mp,jt+1, j = 1, . . . ,m

3) Find the global centroid updates mjt+1 = 1/P ∑P
p=1 mp,jt+1, j = 1, . . . ,m

4) Update the centroids as in Eq. (S.22).
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The k-means algorithm is fully parallel in point 2). In point 3) the parallelization

is used to speed up the sum. This can be done with multiple CPU of in GPU

context as we do in this paper.

S.2.3 Sequential Monte Carlo method using weights

and model parameters of a measurement equation

specified as mixture

As regards the sequential filtering we apply sequential Monte Carlo as introduced

in Billio et al. (2013) and implemented in Casarin et al. (2015).

Following ?, ?, and ?, we define the augmented state vector wθ
t = (wt,θt) ∈ Z,

and the augmented state spaceW = Sn−1×Θ. Our model can be written in the

augmented state space form where the measurement and transition densities are

given in Section 2 of the paper and repeated here as

f(yt|wθ
t , ỹt) ∝

n∑
i=1

witN
(
ỹit, σ

2
it

)
(S.24)

f(w̃t|θt,wθ
t−1,y1:t−1, ỹ1:t−1) ∝ Ln−1 (DBtvt−1,DBtΣB′

tD
′) (S.25)

where w̃t = (w1t, . . . , wn−1,t)′, wnt = 1− w̃′tιn−1

Source code The mixture approach used in Section 2 in the paper is reported

in the source MATLAB code below. In line 2 we draw one of the mixtures

and in line 3 permute the associated prediction with our incompleteness. For

comparison purposes, the probabilistic combination approach used in Casarin

et al. (2015) is reported (commented) in line 1.
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Listing 1: Source code for the mixture approach.

1 % S . y t i l d e ( i , z ) = logmul (S .mOmega( i , : , z ) ) ∗ . . .

% mXTot(S . t , : , z ) ’ + exp ( 0 . 5 ∗ S . mSigma( i , z ) )

% ∗ randn (1 , 1 ) ;

2 I = EmpCPU( logmul (S .mOmega( i , : , z ) ) , 1 ) ;

3 S . y t i l d e ( i , z ) = mXTot(S . t , I , z ) ’ + . . .

exp ( 0 . 5 ∗ S . mSigma( i , z ) ) ∗ randn (1 , 1 ) ;

S.2.4 Practical guide for practitioners

In this subsection we provide a description on how we settled prior values and the

reasoning behind our choices. We describe separately priors for model weights,

model incompleteness and cluster selection.

Incompleteness and weights parameters The algorithm prior parameters

are described in Table S.1.

Prior Value Description
κ 0.7 ESS resampling threshold κ > 0.
λj 0.3 Variance prior for the cluster weight dynamics in eq. (23).
σ2
i 0.01 Variance prior for the incompletness process σ2

it.

Table S.1: Prior values.

The Table reports the prior parameters of our model. In particular, we set:

1) λj equal to 0.3 to allow for possible large variation and uncertainty in the

weights. We remember weights assume values in the interval [0,1] and a

similar variance allows in few days large switches in the weights.
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2) σ2
i equal to 0.01 for a small level of incompletness corresponding to a one

standard deviation of the series.

We also refer to Billio et al. (2013) and Casarin et al. (2015) for robustness of

these values.

Number of clusters The number of cluster in the K-means algorithm depends

on the problem at hand and has to be set by the researcher. A good rule is to set

a number of clusters that brings to a reasonable number of series in each cluster

and the economic theory that the researcher what to test, e.g. number of sectors.

More clusters bring to lower number of series for each unit increasing uncertainty

in the estimation. On the contrary, a small number of clusters can also bias the

results because it can mix series that belong to different sectors. In our empirical

application we use graphical evidence to choose the number of clusters. We

compare variance and degree of freedom estimates for the financial application,

see Figure 1, and persistence estimates for the macroeconomic example, see

Figure S.3 and Table S.5.

In the financial applications, we believe the large differences across forecasts is

in the higher moments and tails behaviour. Our cluster algorithm is then applied

to predicted variance and predicted degree of freedom. In Figure 1, we find

that when choosing two clusters for the Nornmal GARCH(1,1) models results in

average cluster variances that are more than double in cluster n2 versus cluster

n1. The same ratio applies to degree of freedom for the t-GARCH(1,1) models

in clusters t2 versus t1. We think forecast densities should substantially differ

to maximize gains from combinations and current evidence on average cluster

variance and degree of freedom goes in that direction. Adding a third cluster
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resulted in a less clear pattern, with values closer among the three clusters.

In the macroeconomic application, the cluster algorithm is applied to a

persistent measure, precisely the autoregressive coefficient. Therefore, the source

of discrimination among clusters is the persistence of the series. In Figure S.3

and Table S.5 we compare five clusters versus seven clusters. The cluster means

span well all the individual series estimates. Reducing the cluster numbers lower

than five and increasing higher than six resulted in a too sparse and too dense

division. We also check six clusters, but the difference with five cluster was

minor and we decided not to report it.

S.3 Forecast evaluation

To measure the forecast ability of our methodology, we consider several statistics

for point and density forecasts previously proposed in the literature. Assume we

have n different approaches to predict the variable y.

Point forecasts. We compare point forecasts in terms of Root Mean Square

Prediction Errors (RMSPE)

RMSPEi,h =

√√√√√ 1
t∗

t∑
t=t

ei,t+h,

where t∗ = t − t + h, t and t denote the beginning and end of the evaluation

period, and ei,t+h is the h-step ahead square prediction error of model i.

Density forecasts. The complete predictive densities are evaluated as follows.

Let f(yt+h|Iit) be a candidate density obtained from the approach i. The

13



Logarithmic Score (LS) is then given as:

LSi,h = − 1
t∗

t∑
t=t

ln f(yt+h|Iit), (S.26)

for all i and choose the model for which this score is minimal, or, as we report

in our tables and use in the learning strategies, its opposite is maximal.

We also evaluate density forecasts based on the continuous rank probability

score (CRPS); see, for example, Gneiting and Raftery (2007), ?, ? and ?.

The CRPS for the model i measures the average absolute distance between

the empirical cumulative distribution function (CDF) of yt+h, which is simply a

step function in yt+h, and the empirical CDF that is associated with model i’s

predictive density:

CRPSi,t+h =
∫ +∞

−∞

(
F (z|Iit)− I[yt+h,+∞)(z)

)2
dz (S.27)

= Et|ỹi,t+h − yt+h| −
1
2Et|ỹ

∗
i,t+h − ỹ′i,t+h|,

where F (·|Iit) is the CDF from the predictive density f(yt+h|Iit) of model i

and ỹ∗i,t+h and ỹ′i,t+h are independent random variables with common sampling

density equal to the posterior predictive density f(yt+h|Iit). We report the

sample average CRPS:

CRPSi,h = − 1
t∗

t∑
t=t

CRPSi,t+h. (S.28)

Smaller CRPS values imply higher precisions and, as for the log score, we report

the average CRPSi,h for each model i in all tables.
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Tail forecasts. Given that our approach produces complete predictive

densities for the variable of interest, it is particularly suitable to compute tail

events. We consider two statistics and an economic measure for tail events. We

compute weighted averages of Gneiting and Raftery (2007) quantile scores that

are based on quantile forecasts that correspond to the predictive densities from

the different models, i.e.,

QS(α, i, t) =
(
I{yt+1 5 F−1(α, i)} − α

) (
F−1(α|Iit)− yt+1

)
, (S.29)

with F−1(α|Iit) is the 1-step ahead quantile forecast using prediction i for level

α ∈ (0, 1). It can be shown that integrating (S.29) over α ∈ (0, 1) will result

in the CRPS measure (S.27), see ?. ?, ? and ? propose to integrate weighted

versions of (S.29) over α, with these weights being fixed functions of α chosen

such to emphasize in the forecast evaluation a certain area of the underlying

forecast density. We use a discrete approximation to this integration and use

weights that emphasize both tail and the left tail of the predictive density:

avQS-Ti = 1
T − t0 − 1

T−1∑
s=t0−1

 1
99

99∑
j=1

(2αj − 1)2QS(αj, i, s+ 1)


avQS-Li,h = 1
T − t0 − 1

T−1∑
s=t0−1

 1
99

99∑
j=1

(1− αj)2QS(αj, i, s+ 1)
 (S.30)

where αj = j/100 and QS(αj, i, s + 1) is defined in (S.29) for a quantile j. In

(S.30), avQS-T emphasizes both tails and avQS-L the left tail of the predictive

density relative to the realization 1-step ahead. To study how the models perform
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in the left tail prediction over time, we consider the cumulative sum of avQS-L:

cumavQS-Li,h,t =
t∑

s=t0−1
avQS-Li,h,s (S.31)

The most accurate model at observation t produces the lowest cumavQS-Li,h,t.

Finally, following ?, we apply the ? t-tests for equality of the average

loss (with loss defined as squared error, log score, or CRPS). In our tables

presented below, differences in accuracy that are statistically different from

zero are denoted by one, two, or three asterisks, corresponding to significance

levels of 10%, 5%, and 1%, respectively. The underlying p-values are based on

t-statistics computed with a serial correlation-robust variance, using the pre-

whitened quadratic spectral estimator of ?. Monte Carlo evidence in ? and ?

indicates that, with nested models, the Diebold-Mariano test compared against

normal critical values can be viewed as a somewhat conservative (conservative

in the sense of tending to have size modestly below nominal size) test for equal

accuracy in the finite sample. Since the AR benchmark is always one of the

model in the combination schemes, we treat each combination as nesting the

baseline, and we report p-values based on one-sided tests, taking the AR as the

null and the combination scheme in question as the alternative.

S.4 Additional details on empirical results

S.4.1 Additional details on the financial application

Table S.2 reports the cross-section average statistics, together with statistics for

the S&P500. Some series have much lower average returns than the index and
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Subcomponents S&P500
Lower Median Upper

Average -0.002 0.000 0.001 0.000
St dev 0.016 0.035 0.139 0.019
Skewness -1.185 0.033 1.060 -0.175
Kurtosis 8.558 16.327 65.380 9.410
Min -1.322 -0.286 -0.121 -0.095
Max 0.122 0.264 1.386 0.110

Table S.2: Average cross-section statistics for the 1856 individual stock daily log
returns in our dataset for the sample 18 March 2002 to 31 December 2009. The
columns “Lower”, “Median” and “Upper” refer to the cross-section 10% lower quantile,
median and 90% upper quantile of the 3712 statistics in rows, respectively. The
rows “Average”, “St dev”, “Skewness”, “Kurtosis”, “Min” and “Max” refers to
sample average, sample standard deviation, sample skewness, sample kurtosis, sample
minimum and sample maximum statistics, respectively. The column “S&P500” reports
the sample statistics for the aggregate S&P500 log returns.

volatility higher than the index up to 400 times. Heterogeneity in skewness is

also very evident with the series with lowest skewness equal to -42.5 and the one

with highest skewness equal to 27.3 compared to a value equal to -0.18 for the

index. Finally, maximum kurtosis is 200 times higher than the index value. The

inclusion in our sample of the crisis period explains such differences, with some

stocks that realized enormously negative returns in 2008 and impressive positive

returns in 2009.

Details of the trajectories of the weights are given in Figure S.1 by using the

De Finetti or ternary diagram (see ? and ?).

17



0 0.5 1
-0.2

0

0.2

0.4

0.6

0.8

1

z
1,t

 (n1) z
2,t

 (n2)

z
-(1,2),t

 (t1,t2)

0 0.5 1
-0.2

0

0.2

0.4

0.6

0.8

1

z
1,t

 (n1) z
3,t

 (t1)

z
-(1,3),t

 (n2,t2)

0 0.5 1
-0.2

0

0.2

0.4

0.6

0.8

1

z
1,t

 (n1) z
4,t

 (t2)

z
-(1,4),t

 (n2,t1)

0 0.5 1
-0.2

0

0.2

0.4

0.6

0.8

1

z
2,t

 (n2) z
3,t

 (t1)

z
-(2,3),t

 (n1,t2)

0 0.5 1
-0.2

0

0.2

0.4

0.6

0.8

1

z
2,t

 (n2) z
4,t

 (t2)

z
-(2,4),t

 (n1,t1)

0 0.5 1
-0.2

0

0.2

0.4

0.6

0.8

1

z
3,t

 (t1) z
4,t

 (t2)

z
-(3,4),t

 (n1,n2)

Figure S.1: De Finetti diagram for the pairwise subcomposition comparison between
model weights over time. In each plot the trajectory of the ternary (zit, zjt, z−(ij)t),
j > i (blue line), the starting point (red dot), the ending point (black dot) and the
equal weight composition (square).
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Figure S.2: Gray area: the set of series (standardised for a better graphical
representation), at the monthly frequency, of the Stock and Watson dataset. Solid
line: growth rate of real GDP (seasonally adjusted) for the US. Dashed line: inflation
measured as the change in the GDP deflator index (seasonally adjusted). Dotted line:
yields on US government 90-day T-Bills (secondary market). Dashed-dotted: total
employment growth rate for private industries (seasonally adjusted).

S.4.2 Additional details on the macroeconomic

application

We consider the extended Stock and Watson (2005) dataset, which includes 142

series sampled at a quarterly frequency from 1959Q1 to 2011Q2. A graphical

description of the data is given in Figure S.2.

For each variable we estimate a Gaussian autoregressive model of the first

order, AR(1),

yit = αi + βiyit−1 + ζit, ζit ∼ N (0, σ2
i ), (S.32)

using the first 60 observations from each series. Then we identify the clusters

of parameters by applying our k-means clustering algorithm on the vectors,
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θ̂i = (α̂i, β̂i, σ̂2
i )′, of least square estimates of the AR(1) parameters. A detailed

description of the 5 and 7 clusters is provided in Tables S.3-S.4.

The left and right columns in Fig.S.3 show the clusters of series in the

parameter space. The results show substantial evidence of different time series

characteristics in several groups of series. The groups are not well separated when

looking at the intercept values (see Fig. S.3, first and second row). However,

the groups are well separated along two directions of the parameter space, which

are the one associated with the variance and the one associated with persistence

parameters (Fig.S.3, last row). The differences in terms of persistence, in the

different groups, is also evident from the heat maps given in Fig.S.5. Different

gray levels in the two graphs show the value of the variables (horizontal axis)

over time (vertical axis). The vertical red lines indicate the different clusters.

One can see for example that the series in the 2nd and 4th cluster (of 5) are more

persistent then the series in the clusters 1, 3 and 5 (see also Fig. S.3, bottom

left). Series in cluster 1, 2 and 4 are less volatile than series in the cluster 3

and 5. This information is also summarised by the mean value of the parameter

estimates for the series that belong to the same cluster. See the values in Table

S.5. Looking at the composition of the predictor groups (see also Tables S.3-S.4),

we find for the five clusters that:

1. The first cluster comprises capacity utilisation, employment variables,

housing (building permits and new ownership started) and manufacturing

variables (new orders, supplier deliveries index, inventories).

2. The second cluster contains exports, a large numbers of price indexes

(e.g. prices indexes for personal consumption expenditures, and for gross
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domestic product) some money market variables (e.g. M1 and M2).

3. The third cluster includes real gross domestic product, consumption and

consumption of non-durables, some industrial production indexes, and

some financial market variables (e.g., S&P industrial, corporate bonds and

USD - GBP exchange rate).

4. The fourth cluster includes imports, some price indexes and financials such

as government debt (3- and 6-months T-bills and 5- and 10-years T-bonds),

stocks and exchange rates.

5. The fifth cluster mainly includes investments, industrial production indexes

(total and many sector indexes), and employment.

Evidence is similar for the seven clusters.
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Figure S.3: Pairwise scatter plots of the series features: αi and βi (first row), αi and
σ2
i (second row) and βi and σ2

i (last row). In each plot the red dots represent the
cluster means. We assume alternatively 5 (left) and 7 (right) clusters.
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Figure S.4: 5-step ahead fan charts for demeaned GDP (top panel) and demeaned
GDP deflator (bottom panel). Estimated mean (solid blue line) and 5% and 95%
quantiles (gray area) of the marginal prediction density. (Demeaned) realizations in
red dashed line
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5 clusters
k α β σ2

1 0.049 0.752 0.270
2 0.021 -0.074 0.390
3 0.124 0.157 1.260
4 0.054 -0.338 1.335
5 0.100 0.466 0.811

7 clusters
k α β σ2

1 0.109 0.434 0.454
2 0.185 0.263 0.862
3 0.019 -0.116 0.224
4 0.090 -0.321 0.665
5 0.137 0.091 1.250
6 0.124 -0.437 1.297
7 0.026 0.817 0.197

Table S.5: Cluster means for the 5 (top table) and 7 (bottom table) cluster
analysis. The first column, k, indicates the cluster number given in Fig. S.3 and
the remaining three columns the cluster mean along the different directions of
the parameter space.
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Figure S.5: Normal cumulative density function for the standardised series. The series
are ordered by cluster label. We assume alternatively 5 (left) and 7 (right) clusters.

Figure S.6 shows the De Finetti’s diagram of the two largest weights in the

seven clusters for each of the variables to be predicted and a selection of horizons,

h = 1, 2, 5, using multivariate combinations and assuming bk,ij equal to the

recursive log score for model i in cluster j when predicting the series k.

Figure S.8 shows a typical output of the model weights (bk,ij) in the seven

clusters. There are large differences across clusters: the clusters 2, 4, 5 and 6

have few models with most of the weights; the other clusters, 1, 3 and 7, have

more similar weights across models. This finding should be associated with the

largest weights for the clusters 2, 4, 5 and 6 and indicates that using recursive

time-varying bk,ij weights within the clusters increases forecast accuracy for GDP

growth relative to using equal weights. Figure S.8 also indicates that the weights

within clusters are much more volatile than the cluster common component,

indicating that individual model performances may change much over time even

if information in a given clusters is stable.
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Figure S.6: De Finetti’s diagrams for the dynamic comparison of the two largest
weights. Rows: diagrams for the four series of interest (real GDP growth rate,
GDP deflator, Treasury Bills, employment). Columns: forecast horizons (1, 3 and
5 quarters). In each plot the trajectory (blue line), the starting (red) and ending
(black) points and the equal weight composition (square).
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Figure S.7: In each plot the mean logistic-normal weights (different lines) for the
univariate combination model are given. Rows: plot for the four series of interest (real
GDP growth rate, GDP deflator, 3-month Treasury Bills, employment). Columns:
forecast horizons (1, 3 and 5 quarters).
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S.5 Computing time

In this section we compare the computational speed of CPU with GPU in

the implementation of our combination algorithm for both the financial and

macro application. Whether CPU computing is standard in econometrics, GPU

approach to computing has been received large attention in economics only

recently. See, for example, ? for a review, Geweke and Durham (2012) and

? for applications to Bayesian inference and ?, ? and ? for solving DSGE

models.

The CPU and the GPU versions of the computer program are written in

MATLAB, as described in Casarin et al. (2015). In the CPU setting, our test

machine is a server with two Intel Xeon CPU E5-2667 v2 processors and a total

of 32 core. In the first GPU setting, our test machine is a NVIDIA Tesla K40c

GPU. The Tesla K40c card is with 12GB memory and 2880 cores and it is

installed in the CPU server. In the second GPU setting, our test machine is a

NVIDIA GeForce GTX 660 GPU card, which is a middle-level video card, with

a total of 960 cores. The test machine is a desktop Windows 8 machine, has 16

GB of Ram and only requires a MATLAB parallel toolbox license.

We compare two sets of combination experiments, the density combination

based on 4 clusters with equal weights within clusters and time-varying volatility,

DCEW-SV, and the density combination with univariate combination based on

7 clusters with recursive log score weights within clusters, UDCLS72, see Section

S.4.2, for an increasing number of particles N . In both sets of experiments we

calculated, in seconds, the overall average execution time reported in Table S.6.
2The case MCDCLS7 provide similar relative timing, in absolute terms a bit faster than

the univariate ones.
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Figure S.8: The plots show the model weights (bk,ij) in each cluster (i = j) when
forecasting GDP growth (k = 1) at the 1-step ahead horizon. The first row refers to
clusters 1, 2, and 3; the second row to clusters 4, 5, and 6; the last row to cluster 7.
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As the table shows, the CPU implementation is slower then the first GPU

set-up in all cases. The NVIDIA Tesla K40c GPU provides gains in the order of

magnitude from 2 to 4 times than the CPU. Very interestingly, even the second

GPU set-up, which can be installed in a desktop machine, provides execution

times comparable to the CPU in the financial applications and large gains in

the macro applications. Therefore, the GPU environment seems the preferred

one for our density combination problems and when the number of predictive

density becomes very large a GPU server card gives the highest gains.

DCEW-SV UDCLS7
Draws 100 500 1000 100 500 1000

CPU 1032 5047 10192 5124 25683 51108
GPU 1 521 2107 4397 1613 6307 14017
GPU 2 1077 5577 13541 2789 13895 27691
Ratio 1 1.98 2.39 2.32 3.18 4.07 3.65
Ratio 2 0.96 0.90 0.75 1.84 1.85 1.85

Table S.6: Observed total time (in seconds) and CPU/GPU ratios for the algorithm
on CPU and GPU on different machines and with different numbers of particles. The
CPU is a 32 core Intel Xeon CPU E5-2667 v2 two processors and the GPU1 is a
NVIDIA Tesla K40c GPU and the GPU2 is a NVIDIA GeForce GTX 660. “Ratio
1” refers to the CPU/GPU 1 ratio and “ratio 2” refers to the CPU/GPU 2 ratios.
Number below 1 indicates the CPU is faster, number above one indicates that the
GPU is faster.
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