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Abstract

The positive relationship between real exchange rates and natural resource in-

come is well understood and studied. However, climate change and the transition

to a lower-carbon economy now challenges this relationship. We document this by

proposing a novel news media-based measure of climate change transition risk and

show that when such risk is high, major commodity currencies experience a per-

sistent depreciation and the relationship between commodity price fluctuations and

currencies tends to become weaker.
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1 Introduction

In the autumn of 2020 one of the highest-profile climate change lawsuits cases was be-

ing processed by the Norwegian Supreme Court. The case, where environmental groups

argue that new exploratory drilling licenses violate a constitutional right to a healthy

environment, has attracted considerable attention both in Norway and internationally.

The reason is that it is a test case taking on an industry that is key to a commodity

exporter’s economy. Regardless of outcome,1 it directly challenges the right to further

exploration and thereby implicitly argues for a structural transformation towards a lower-

carbon economy. In this transition, fossil fuel commodity production has to be reduced.

This creates climate change transition risk.2

Does climate change transition risk already affect prices? Recent experiences suggest

this could be the case: Low fossil fuel commodity currency valuations and the apparent

disconnection between commodity prices and currencies, starting around 2016, have been

puzzling market analysts monitoring the exchange rate market closely. As Norges Bank

hypothesized in 2019:

“The krone has been weaker for some time than projected in the Monetary Pol-

icy Report. [...] Prospects for lower activity in the petroleum sector and un-

certainty about the need for restructuring in the Norwegian economy may also

have weighed on the krone.”(Norges Bank Monetary Policy Report 3/2019)

In this article we formally investigate the pricing implications of climate change tran-

sition risk on commodity currency developments in Australia, Brazil, Canada, Malaysia,

Mexico, Norway, Russia, and South Africa. In particular, we look upon climate change

transition risk as concerns about structural change and policies aimed at reducing environ-

mental and climate impact voiced in the public discourse, and use tools from the Natural

Language Processing (NLP) literature, and a unique dataset of news coverage from the

Dow Jones Newswires Archive (DJ), to construct measures of this type of climate risk.

We then document that when climate risk is high, these commodity currencies experience

a persistent depreciation and the relationship between commodity prices and currencies

tends to become weaker.

1As of this writing, the verdict has still not been made public.
2Climate change risks are often decomposed into the following three components (Carney, 2015): Physical

risk arising from climate- and weather-related events; Liability risk arising if losses due to climate change

are insured and legally pursued with compensation demanded; Transition risk resulting from the process

of adjustment towards a lower-carbon economy. In the following we will often denote climate change

transition risk simply as climate risk, but make the distinction between the different climate change risks

when it is important and to avoid confusion.
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These results are all new in the literature, but their intuition can easily be understood

using standard economic theory and acknowledging that expectations about the future

matter for exchange rates today. First, the theory on structural transformation from

changes in natural resource income predicts that decreased income from natural resources

results in lower overall domestic demand (Corden and Neary (1982), Corden (1984)). Part

of this lower demand is absorbed by lower demand for non-traded goods, which implies

that labor and capital will flow to the traded sectors. A depreciation of the exchange

rate facilitates the shift. This is just the basic “Dutch disease theory”. Conventionally,

the theory is often formulated under the assumption of an exogenous permanent fall in

commodity prices. However, as documented empirically and theoretically in Bjørnland

and Thorsrud (2016) and Bjørnland et al. (2019), the effect can also be formulated under

the expectation of a permanently lower activity level in the commodity-producing sector of

a country. Accordingly, when climate risk, i.e., concerns about structural transformation

away from fossil fuel production, is high, the exchange rate should experience a persistent

depreciation, as we find.3

Second, although modeling exchange rates is difficult (Meese and Rogoff, 1983), a

vast empirical literature on commodity exporters has shown that including commodity

prices in exchange rate models provides a substantially better fit to the data (see, e.g.,

Amano and van Norden (1995), Chen and Rogoff (2003), Akram (2004), Bodart et al.

(2012), Ferraro et al. (2015), Zhang et al. (2016), Kohlscheen et al. (2017)). The reason

is that commodity price fluctuations contain important exogenous terms-of-trade shocks.

Thus, to the extent that prolonged periods of increasing climate risk make commodity

currencies less dependent on commodity income, either because of lower global demand for

fossil fuels in general, or because resource income has become a smaller share of total value

creation in the commodity-exporting country, a weaker correlation between commodity

price fluctuations and exchange rates is what one would expect.

The novelty of our analysis is how we use tools from the NLP literature and news media

coverage to construct country-specific measures of climate change transition risk. While

the scientific discussion about climate change and the statistical evidence documenting

3This does not rule out that high climate risk is associated with expectations of permanently lower com-

modity prices. As long as production technology has diminishing returns to scale, a long-run depreciation

of the exchange rate is a common feature in theoretical models containing a reduction in natural resource

income. Under the assumption of constant returns to scale in production, however, the equilibrium ex-

change rate will typically be determined only by the supply side of the economy, and commodity income

does not matter (Rogoff and Obstfeld, 1996, Chap. 4). Still, even in this setting, transitional dynamics

imply a real exchange rate depreciation, and the return to an equilibrium might take a very long time.

Moreover, the real exchange rate might also be affected, even in the very long run, if domestic markups

correlate positively with commodity income.
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it dates back several decades (Arrhenius (1896), Keeling (1970), Nordhaus (1977)), the

puzzle related to commodity prices and currencies, and the public awareness of climate

risk and its potential economic consequences, seems to be of a much newer date. For this

reason we share the view taken in, e.g, Nimark and Pitschner (2019), Larsen et al. (2020),

and ter Ellen et al. (2020), where the media operates as “information intermediaries”

between agents and the state of the world, and use news media coverage as a proxy for

capturing changing perceptions of climate risk in the public discourse. This naturally

includes changes in actual policies and investor and consumer behavior, but also more

silent features related to systematic directional modification of ideas and narratives as

they are spread in the public discourse (Shiller (2017), Hirshleifer (2020)).

Our underlying hypothesis is simple: When the association in media coverage be-

tween a given country and talk about structural change and policies aimed at reducing

environmental and climate impact is high, it signals climate risk that might lead to a

persistent depreciation of commodity currencies and weaken their relationship with com-

modity prices, due to the mechanisms discussed above.

We operationalize this hypothesis using a unique and large corpus, i.e., text from

over 20 million articles, of international business news provided by DJ. This data is

then partitioned into monthly blocks and a neural network is used to construct word

embeddings for each month in the dataset. Word embeddings represent words in vector

space, and have, following the seminal contributions of Mikolov et al. (2013) and Mikolov

et al. (2013), become a much-used tool in the NLP and Machine Learning (ML) literature.

The reason is that they densely encode many linguistic regularities and patterns, and

allow for arithmetic operations capturing associative meaning. Accordingly, for each

month in the sample, we derive the weighted sum of word vectors representing concerns

about structural change and policies aimed at reducing environmental and climate impact,

and regress these on word vectors for each country. The parameter estimates of these

regressions measure how strong the association between a given country and climate risk

is in each month.

Including the climate risk indexes in otherwise standard empirical exchange rate mod-

els increases the model fit by roughly 8 percent on average. Allowing for a non-linear

relationship between climate risk and exchange rates suggests that climate risk has af-

fected commodity currencies throughout the 2000s, but that the dominant effects are

found after 2014. Moreover, although the relationship between commodity prices and

currencies tends to become weaker when climate risk is high, this finding is not univer-

sal across the countries we study. For countries where the commodity basket contains

a large share of gas exports, we actually find the opposite relationship. This indicates

that climate risk is also associated with substitution effects between fossil fuel products.
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Consuming gas, for example, emits less Green House Gas (GHG) than consuming coal,

potentially benefiting exporters of the former commodity at the expense of the latter.

The negative relationship between climate change transition risk and commodity cur-

rency valuations is affirmed when we estimate Vector-Autoregressive (VAR) models. Tak-

ing into account the dynamic interactions between, e.g., commodity prices, asset prices,

currencies, and climate risk, shows that climate change transition risk is generally not

significantly affected by the other variables in the system, whereas exogenous climate risk

innovations generally lead to a significant and persistent exchange rate depreciation. Be-

cause natural resource income is an important part of aggregate income creation in major

commodity exporters, forward looking asset markets are naturally also affected by these

effects. According to our estimates, an unexpected increase in climate change transition

risk tends to cause persistently lower aggregate stock market valuations.

To the best of our knowledge, this is the first analysis providing evidence about how

climate change transition risk affects the highly liquid foreign exchange market. Our re-

sults do not only have practical importance for policy makers, as highlighted by the quote

above, but also contribute to three different growing strands of the economic literature.

First, our study speaks directly to a growing literature on the pricing implications of

climate risk. Cha et al. (2020) analyze the responses of monthly U.S. dollar real exchange

rates of 76 countries to global temperature shocks, i.e., physical climate risk, and find

significant responses for roughly half of the countries in the sample, where increasing the

relative size of the agricultural sector makes one more prone to a depreciation. Thus far,

however, most of this literature has been concerned with pricing of firms and firm value.

For example, Krueger et al. (2020) use a survey to document that institutional investors

believe climate risks have financial implications for their portfolio firms and that these

risks, particularly regulatory risks, have already begun to materialize.4 In relation to

commodity producers, the recent study by Atanasova and Schwartz (2019) is particularly

relevant. They find that growth of commodity-producing firms’ fossil fuel reserves now

has a negative effect on firm value, suggesting that capital markets treat fossil fuel as

“stranded assets” in the transition to a lower-carbon economy. Thus, just as stranded

assets might affect firms’ value negatively because of climate risk, our results imply that

this risk also negatively affects the pricing of exchange rates and aggregate stock markets

in countries where natural resource income is a large fraction of total income.

Second, this article speaks to a growing literature using tools from NLP and ML to

address puzzles and improve measurement in economics and other social sciences. For

example, Kozlowski et al. (2018) use word embeddings to produce richer insights into

4For other recent examples on the same topic, see, e.g., Bolton and Kacperczyk (2020), Hsu et al. (2020),

Freeman et al. (2015), Daniel et al. (2019), Batten et al. (2016), Andersson et al. (2016), In et al. (2017).
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cultural associations and categories than possible with existing methods in the field of

sociology, while Thorsrud (2018), Larsen and Thorsrud (2019), Baker et al. (2016), and

Hansen et al. (2018) use text as data to measure business cycle developments, uncertainty,

and monetary policy. In particular, by focusing on climate change, this article relates

to Engle et al. (2020) who propose a news-based climate risk measure for dynamically

hedging climate change risk. However, their index essentially measures how much climate

change is focused upon in the news, whereas our word embedding approach measures in

what context it is focused upon. In terms of commodity currencies, the difference between

how much and what context matters. Indeed, when using the climate risk index proposed

by Engle et al. (2020) to explain exchange rate fluctuations, the estimated coefficients of

climate risk are inconsistent regarding their sign and often insignificant.

Finally, our study relates more loosely to a growing literature studying information

diffusion, belief formation, and the social processes that shape economic thinking and

behavior (Gentzkow et al. (2011), King et al. (2017), Prat (2018), Shiller (2017), Hirsh-

leifer (2020)). Consistent with studies finding that the news media channel matters in

this context (Larsen et al. (2020), ter Ellen et al. (2020)), we find that alternative climate

risk approximations, such as so-called Climate Change Performance Indexes or actual

temperature change anomalies, tend to produce inconsistent results across countries in

terms of explaining commodity currency developments. Thus, climate change transition

risk, and how economic agents in the commodity currency market perceive this risk, does

not seem to be measurable from climate change statistics or hard economic data alone.

The rest of this paper is organized as follows: Section 2 presents the textual data,

the word embedding methodology, and the proposed climate risk measures. Section 3

describes the exchange rate modeling framework and presents the main results. In Section

4 we document that our results are robust to a number of different modeling choices.

Section 5 concludes.

2 Climate risk and measurement

Below we describe the DJ corpus in greater detail, and then how we apply a word em-

bedding model to construct quantitative and country-specific climate risk measures.

2.1 News coverage and word embeddings

The DJ corpus consists of roughly 23 million news articles, written in English, covering

the period 2001 to 2019. The database covers a large range of Dow Jones’ news services,

including content from The Wall Street Journal. Arguably, the DJ does not fully reflect

the public discourse. Still, news stories relevant for investors and agents in the inter-
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national foreign exchange market are undoubtedly well covered by this type of business

news. The Dow Jones company, and its flagship publication The Wall Street Journal, is

also one of the largest newspapers in the U.S. in terms of circulation. This means that

it has a large footprint in both the U.S. and global media landscape and that important

ongoing stories and discussions are well covered by this type of news outlet.

The news corpus is cleaned prior to estimation. We remove all email and web addresses,

numbers, and special characters, erase punctuation, set all letters to lowercase, and remove

words containing fewer or more than two and ten letters, respectively. These feature

selection steps reduce the size of the vocabulary to approximately 90000 unique terms.

The dimension reduction facilitates estimation and is common in the literature. Finally,

the corpus is partitioned into monthly blocks of articles. Each month of data contains

between 42000 (2005M2) and 115000 (2013M3) articles.

To make the vast amount of text into quantifiable objects useful for statistical analysis,

we use a word embedding model. Word embedding models represent words as relatively

small and dense vectors. The famous and widely used word2vec algorithm (Mikolov et al.

(2013), Mikolov et al. (2013)) is one of many algorithms to compute such vectors, and is

often denoted as a skip-gram model with negative sampling. In essence, the method uses

a binary classification problem, asking “is word co likely to show up near the word ta?”,

as a vehicle to compute the classifier weights which will be the actual word embeddings.

In our setting, this approach has two particularly appealing features. First, running

text can be used as implicit supervised training. This avoids the need for any sort of

hand-labeled supervision signal and makes the methodology flexible and user friendly in

many different contexts. Second, and most importantly, the estimated word embeddings

encode many linguistic regularities and patterns, and allow for arithmetic operations that

can capture associative meaning. A famous example is “king” − “man” + “woman”

≈ “queen”, where the word (vector) “king” and the difference between “woman” and

“man” pulls the resulting vector in the royal and feminine directions, respectively. Thus,

the resulting vector tends to end up close to the actual vector for the word “queen”.

More formally, given a target word ta and a context word co, the probability that the

word co is (is not) a real context word for ta is P (+|ta, co) (P (−|ta, co) = 1−P (+|ta, co)).
The intuition for the skip-gram model is then that a word is likely to occur near the target

if its embedding is similar to the target embedding, where similarity is approximated by

the dot product of the word vectors for co and ta. The goal of the learning algorithm for

the skip-gram model is then to maximize

L(θ) =
∑

(ta,co)∈+

P (+|ta, co) +
∑

(ta,co)∈−

P (−|ta, co), (1)
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which for one word/context pair (ta, co) can be written as:

L(θ) = log
1

1 + e−co·ta
+

k∑
i=1

log
1

1 + eni·ta
, (2)

where k denotes the context window for which the co words occur relative to the target

word ta, and the logistic (or sigmoid) function is used to turn the similarity measure

between the word vectors for co and ta into probabilities. The last term in (2) relates

to the negative sampling part of the skip-gram model name. As running text is used as

input to the model, only positive examples are present and negative examples need to

be generated and added to the data. These terms are commonly called noise terms (ni).

Thus, for each target word, it is common to add k noise words.

Maximizing (2) can be solved using different methods. Here we use a simple two-

layered neural network. This method is fast, efficient to train, and easily available in

many software packages. The context window k = 5, we restrict the word embedding

length d = 100, and the network is trained for five epochs on every monthly partition of

the data. Thus, for each month in the sample, the word2vec algorithm provides us with

a large word embedding matrix, where each row represents a word in the vocabulary, and

the column length equals d.

2.2 Word embeddings and climate risk

To construct our climate risk measures, i.e., concerns about structural change and policies

aimed at reducing environmental and climate impact, we use the linguistic regularities

and patterns encoded in the word vectors and arithmetic operations. The intuition for

this approach is very much the same as in the royal example above.

More precisely, we first define five word-based categories representing the content of

our definition, and then add these together to obtain an approximation of what we define

as climate change transition risk. This is illustrated in Table 1. Accordingly, the sum

of the concern, fossil fuels, and economy categories results in a vector intended to point

in a direction encompassing “concerns about structural change in a fossil fuel exporting

economy”, whereas adding climate+ − climate− is intended to pull the vector in a more

climate-friendly direction, encompassing “policies aimed at reducing environmental and

climate impact”. Finally, to capture the monthly association between countries and our

definition of climate risk, we solve

CRt ≡ β̂t = arg minS(βt) and S(βt) = ‖countryct − climate riskt × βt‖2 , (3)

where the word vector for countryct is given in Table 1, and βt is the association between

country c and climate risk. Although β̂t is estimated using the OLS estimator on each

8



Table 1. Constructing climate risk indexes from word embeddings. The upper part of the table reports

the core of the climate risk definition used in this article. Categories are printed in bold and the associated

words (i.e., word vectors) are listed in the right side of the table. The lower part of the table reports

the words (word vectors) used to define each country. To avoid associating climate risk with the African

continent as a whole, we use words related to South Africa’s two largest capitals when defining the South

African country vector.

Definition and categories Words

Climate risk ≈
concernt = 1

n1
(concernt + concernedt + riskt + riskyt + uncertaint+

worriedt + worryingt)
about structural change in a
fossil fuelt = 1

n2
(extractt +minet + fossilt + fuelst + fuelt + oilt+

crudet + petroleumt + coalt + lignitet)
exporting
economyt = 1

n3
(economyt + economict + economicst + businesst+

sectort + sectorst)
due to more

climate+t = 1
n4

(climatet + greent + cleant + renewablet + oxygent+
recyclingt + ecosystemt + coolingt + protectt)

relative to

climate−t = 1
n5

(emissionst + dirtyt + fossilt + dioxidet +methanet+
pollutiont + warmingt + exploitt)

policies and actions

Climate riskt ≈ concernt + fossil fuelt + economyt + (climate+t − climate−t )

Countries (countryct)

Norway = 1
n (norwayt + norwegiant)

Mexico = 1
n (mexicot +mexicant)

Malaysia = 1
n (malaysiat +malaysiant)

Canada = 1
n (canadat + canadiant)

Australia = 1
n (australiat + australiant)

South Africa = 1
n (pretoriat + capet)

Brazil = 1
n (brazilt + braziliant)

Russia = 1
n (russiat + russiant)

monthly partition of the sample, the subscript t is used to highlight that this relationship

potentially changes across time.

We emphasize three points about this construction. First, because of differences in

policies, public perception, and consumer and investor behavior across countries, the de-

gree of climate risk is not only time-varying, but also potentially country-specific. Second,

the individual words in each category in Table 1 are averaged to construct one word vec-

tor for each category. This ensures that the methodology is robust to the exact words,

and the number of words, allocated to each category.5 Finally, the CRt estimates contain

both high- and low-frequency fluctuations. Part of the high-frequency fluctuations can

5Performing over 30000 random leave-one-word-out (of each category) permutations of the words listed in

Table 1, and computing a climate risk measure for each unique combination of words, does not change

the main conclusions presented in Section 3.2 (Figure B.1 in Appendix B).
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be due to randomness in news coverage across months. To remove this high-frequency

variation, the raw CRt series are smoothed using moving averages with a window size of

seven months.6

To construct confidence intervals for the CRt estimates, we follow Kozlowski et al.

(2018) and conduct subsampling (Politis and Romano, 1994). For 90% confidence inter-

vals, the corpus (for any given month) is randomly partitioned into 20 subcorpura, and

the word2vec algorithm is run to produce the word embedding matrix for each parti-

tion of the data. Then, the error of the projection statistic CRt for each subsample s is

es =
√
τs(CR

s
t − CRt), where τs and CRs

t are the number of texts and the solution to

(3), respectively, in subsample s. Then, the 90% confidence interval spans the 5th and

95th percentile variances, defined by CRt + es(19)√
τ

and CRt − es(2)√
τ

, where es(2) and es(19)

denote the 2nd and 19th order statistic associated with the lower and upper bound of the

confidence interval.

Figure 1 reports the country-specific climate risk measures together with the estimated

uncertainty. As clearly seen in the graphs, the climate risk measures are very precisely

estimated. It is also clear that there is large cross-country variation in the degree of climate

risk across time. For Norway, for example, the degree of climate risk is substantially higher

in the period after 2012 than in the preceding 10-year period, while the developments in

Brazil are almost the opposite. However, for six of the eight countries we study, the peak

of the climate risk estimates occur after 2014. For some of the countries, i.e., Norway,

Mexico, Malaysia, and Canada, the climate risk measures also contain a small upward-

drifting trend during this sample period.

In studies using text as data, it is common to annotate graphs like those in Figure

1 with historical events to informally validate how plausible the estimates are from a

narrative perspective. Such an approach is less suited here. The reason is that CRt

measures the association between a country and climate risk, and not how much climate

risk is talked about per se. In other words, whereas events likely affect how much different

topics are talked about in the public discourse, the events might not change in what

context these topics are talked about. Still, the annotations reported in Figure 1 suggest

that there is some correlation between important climate events and our proposed climate

risk indexes. In the case of Norway, for example, there has been a substantial increase in

climate risk following the decision to stop further oil and gas exploration in the Arctic.

6As alternative strategies, one could have estimated the word2vec algorithm at a lower frequency, e.g.,

yearly partitions of the news data, and thereby obtained less volatile word embeddings, or estimated (3)

using a more complex time-varying parameter model. We refrained from these alternatives to keep the

methodology simple and to allow for the possibility of sudden, and potentially permanent, monthly shifts

in CRt. However, Figure B.2, in Appendix B, shows that the main results presented in Sections 3.2 and

3.3 are robust to working with the raw climate risk estimates as well as using larger smoothing windows.
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(a) Norway (b) Mexico

(c) Malaysia (d) Canada

(e) Australia (f) South Africa

(g) Brazil (h) Russia

Figure 1. Climate change transition risk. The green lines show the mean estimates. The gray color

shadings cover the 90% confidence intervals. The annotations report some important international and

domestic climate change and political events. The ordering of countries follows from the fact that Norway,

Mexico, Malaysia, and Canada produce primarily petroleum products, while the remaining countries

produce a mix of commodities, including gas, oil, and coal (Figure B.6 in Appendix B).
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Table 2. Climate risk and temperature anomaly correlations. The first row reports the correlation

between the raw series. The second column reports the correlation when a Hodrick–Prescott filter (Ho-

drick and Prescott, 1997), with a smoothing parameter set to 1600, is used to extract the low-frequency

fluctuations from the series. *, **, and *** denote the 10%, 5%, and 1% significance level, respectively.

Norway Mexico Malaysia Canada Australia SouthAfrica Brazil Russia

Raw 0.31*** 0.47*** 0.45*** -0.13* 0.35*** -0.12* -0.15** -0.09

HP-filtered 0.60*** 0.75*** 0.64*** -0.22*** 0.63*** -0.10 -0.15** -0.09

Similarly, most countries experienced an increase in climate risk in the period after the

Paris agreement and around the implementation of the EU Emissions Trading System

(ETS).7

Another way to informally validate the constructed climate risk measures is to ana-

lyze how they correlate with one of the most direct and widely used measures of climate

change, namely temperature change observations (see, e.g., Deschenes and Greenstone

(2007) and Kumar et al. (2019) for applications in economics and finance). After all, it is

reasonable to assume that media coverage of climate risk should bear at least some resem-

blance to actual climate change statistics. We therefore collect statistics from the GISS

Surface Temperature Analysis and use the longitude and latitude resolution provided in

that database to construct country-specific monthly time series of abnormal temperature

fluctuations.8 Table 2 shows that the correlations are high and significant for at least

half of the countries in our sample, and particularly so when looking at the low-frequency

movements in the series. Figure B.5, in Appendix B, visualizes these correlation patterns,

and graphs the temperature anomaly series together with our measures of climate risk.

3 Commodity currencies

Can climate change transition risk explain commodity currency developments? In the

following, we first present a simple single-equation benchmark model intended to capture

7Some climate risk spikes have a more ambiguous interpretation. The large increase in climate risk for

Russia in 2014, for example, might be due to a large increase in the association between Russia and risks

due to conflict, or alternatively, concerns about future Russian gas supply to continental Europe. Only

the latter interpretation has a plausible relationship with our definition of climate risk. For these reasons

we also control for alternative uncertainty measures in the exchange rate models used in the next section.
8GISTEMP Team, 2020: GISS Surface Temperature Analysis (GISTEMP), version 4. NASA Goddard

Institute for Space Studies. Dataset accessed 2020-10-18 at https://data.giss.nasa.gov/gistemp/. See

Lenssen et al. (2019) for details and the most recent description of the data. By definition, these time

series measure deviations from the corresponding 1951-1980 means. It is common in the climate literature

to remove high-frequency noise from the series, and here we do so using the same moving average filter

as used for the news-based climate risk measures.
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short- and long-run fluctuations in commodity currencies. We then document how it

performs relative to an augmented version including climate risk. Next, we evaluate the

relationship between commodity currencies and alternative climate risk approximations,

including temperature anomalies, and present results from systems taking into account

dynamic interactions between commodity prices, currencies, and climate risk.

3.1 The benchmark model and prediction failures?

The theoretical and empirical literature on exchange rate determination is vast. Here we

take a somewhat reduced-form view and use a Behavioural Equilibrium Exchange Rate

(BEER) modeling approach (Clark and MacDonald, 1999).9

The BEER model builds on the observed fact that real exchange rates (REER) are far

from constant and takes as a starting point that the slow reversion to Purchasing Power

Parity (PPP) observed in the data can be explained by fundamental variables explaining

either short- or long-run fluctuations in real exchange rates. For commodity-exporting

economies, and for data sampled at monthly frequency, commonly used explanatory vari-

ables include a commodity price index and short- and long-run interest rate differentials

to capture deviations from Uncovered Interest rate Parity (UIP), differences in growth

prospects, and potential forward guidance effects (Amano and van Norden (1995), Chen

and Rogoff (2003), Akram (2004), Bodart et al. (2012), Ferraro et al. (2015), Zhang et al.

(2016), Kohlscheen et al. (2017), Martinsen (2017)). Newer studies also often include

some measures of uncertainty to capture “flight-to-quality” effects in times of trouble,

such as financial crisis, wars, and geopolitical risks (Forbes and Warnock (2012), Rey

(2015), Goldberg and Krogstrup (2018), Caldara and Iacoviello (2018), Akram (2020)).

Thus, the simple benchmark model we consider can be written as

REERt = γ0 + γ1r
S
t + γ2r

L
t + γ3UNCt + γ4GPRt + β1ComXt + ut (4)

where t denotes the time index, rSt and rLt are the respective short- and long-run real

interest rate differentials, UNCt is a (global) measure for financial uncertainty, GPRt is

a measure of (global) geopolitical risk, and ComXt is the real commodity price index.

Naturally, in later sections (4) is augmented with the proposed climate risk indexes.

In the interest of conserving space, a detailed description of the traditional economic

variables is relegated to Appendix A. In short, for a given country the REER measures

the real effective exchange rate, and we construct the real interest rate differentials using

9While there are theoretical structural models of exchange rate determination, they are, as noted by Rossi

(2013), “...typically too stylized to be literally taken to the data” and do not fit exchange rate data well.

In contrast, BEER models are widely used in policy institutions and have proven to provide a reasonable

historical fit to the data (Martinsen (2017), Mijakovic et al. (2020), Akram (2020)).
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(a) Norway (b) Mexico (c) Malaysia (d) Canada

(e) Australia (f) South Africa (g) Brazil (h) Russia

Figure 2. REER and benchmark model fit. The figure shows the real effective exchange rate indexes

(black) and the in-sample fitted values (gray) from the benchmark regressions (equation (4)).

trade weights. The benchmark uncertainty measure is the V IXt derived from implied

volatility in the U.S. stock market, the GPRt is obtained from Caldara and Iacoviello

(2018), and ComXt is obtained from Gruss and Kebhaj (2019).10

The model in (4) is estimated separately for each country c, and later also as a panel

regression, using data covering the period 2002M1 to 2019M6. This ensures that we have

the same amount of data available for all the countries we study, and it is a period in which

many of the countries in our sample either directly or indirectly have adopted a monetary

policy regime associated with inflation targeting. To obtain parameter estimates, we

use the Dynamic Ordinary Least Squares (DOLS) estimator (Stock and Watson, 1993),

which takes into account the possible endogeneity of the right-hand side variables as well

as potential omission of dynamic effects in models.11

Figure 2 graphs the REER for each country as well as the fitted values from (4). Figure

3 reports the adjusted R2 statistics and parameter estimates. For visual clarity, we only

10ComXt takes into account the basket of commodities produced by country c, and is constructed using

time-varying net-export shares. As discussed in Gruss and Kebhaj (2019), different findings across studies

regarding the relationship between commodity prices and currencies might simply reflect differences in

how the commodity price indexes are defined. As documented in Figure B.3, in Appendix B, our main

results regarding climate risk and exchange rates (see Sections 3.2 and 3.3) are robust to using the

alternative commodity price indexes suggested by Gruss and Kebhaj (2019).
11A battery of tests give inconsistent results across countries, regarding both the existence of variable unit

roots and the degree of cointegration. Our qualitative conclusions are robust in estimating the long-

run coefficients in (4), and (5) in the next section, using either the OLS estimator or Autoregressive

Distributed Lag (ARDL) models (Pesaran and Shin, 1998). See also Section 3.5, where we estimate (5)

as an endogenous system using VAR models.
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report estimates associated with our main research question, i.e., ComX and CR, noting

that the remaining estimates are all generally consistent with economic theory, and can

be obtained on request. Two broad patterns stand out. First, although simple, the model

is able to explain the historical exchange rate developments for these eight commodity

currencies fairly well. As seen from the gray entries in the last column in Figure 3, the

adjusted R2 statistics are as high as 0.85 and over 0.6 on average. Moreover, an increase

in the commodity price index is associated with an appreciation of the REER for all

commodity exporters, as expected. For most of the countries in the sample, the effect is

also highly significant.

Second, towards the latter part of the sample, and especially after 2014, the model

fit deteriorates for many of the countries. In particular, while there are earlier periods in

the sample where the predicted and actual exchange rates differ considerably, it is only

towards the end of the sample this finding is common for most of the countries.

3.2 Adding climate risk

To investigate the role played by climate risk, we augment (4) with the CRt indexes, such

that

REERt =γ0 + γ1r
S
t + γ2r

L
t + γ3UNCt + γ4GPRt

+ β1ComXt + β2CRt + β3(ComXt × CRt) + ut
(5)

and z-score both the commodity price indexes and the climate risk measures prior to

estimation (to make the interpretation of the parameter estimates easier).

In (5), β2 captures the idea that higher values of climate risk should be associated with

a lower REER because structural transformation away from fossil fuels implies that labor

and capital will have to flow from the non-traded to the traded sectors in the economy.

More short-run effects are captured by β3, which measures how terms-of-trade shocks

associated with the commodity market interact with climate risk. While the expected

sign of β2 is clear (negative), the expected sign of β3 is more ambiguous.

We expect β3 to be negative if prolonged periods of increasing climate risk make

commodity countries less dependent on commodity income, or if rising climate risk is as-

sociated with (global) changes in preferences and public regulation and incentive schemes

towards renewable energy sources. Both cases are plausible, and in both cases a simul-

taneous increase in commodity prices and climate risk will lead to smaller terms-of-trade

effects than normal.

On the other hand, in the climate change debate, some fossil fuels are looked upon

as “greener” than others. For example, consuming gas emits less GHG than consuming
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Figure 3. Exchange rates, commodity prices and climate risk estimates. The benchmark regression is

defined in (4), the climate-augmented regression is defined in (5), and the threshold regression is defined

in (6). The 95% confidence intervals are computed using HAC-corrected standard errors. The row labeled

Average reports the average coefficient estimates across countries. The row labeled Panel reports the

results from estimating a version of (5) using a fixed effect panel estimator with standard errors clustered

at the country level. A separate interaction term between climate risk and commodity prices is estimated

for countries producing (filled circles) and not producing (diamonds) coal.

coal.12 Accordingly, as highlighted by some recent studies, substitution effects between

fossil fuel products affect their relative demand (Bloch et al. (2015), Baffes et al. (2020)),

potentially benefiting exporters of petroleum products at the expense of exporters of

coal. If these effects are strong, a simultaneous increase in commodity prices and climate

risk might actually lead to larger terms-of-trade effects than normal, i.e., a positive β3

estimate.

The augmented regression results marked in dark green in Figure 3 summarize our

main result. An increase in climate risk is without exception associated with a depre-

ciation of the REER. The results for the three countries exporting primarily petroleum

products, i.e., Norway, Mexico, and Malaysia, are particularly strong. Here, the β2 esti-

mates are significant at the 95% level (90% level for Malaysia), and the improvement in

fit between the benchmark regression and the climate risk augmented version is between

16% (Norway) and 36% (Mexico). Although the improvement in model fit is less extreme

12Indeed, in the debate about climate change and what to do about it, an increase in gas consumption,

at the expense of, e.g., oil and coal, is discussed as a solution by organizations such as the International

Energy Agency (IEA, 2020).
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for the other countries, the direct climate risk effect is predominantly negative, and very

uncertain only for South Africa. On average across the countries, a one standard devia-

tion increase in climate risk is associated with a real exchange rate depreciation of about

2.5 index points. Further, including climate risk in the models increases the adjusted R2

by roughly 8% on average.

In terms of the interaction effects, the results are more mixed and less significant.

However, in line with simple descriptive statistics on commodity production (Figure B.6

in Appendix B), we find a separation between commodity exporters producing coal and

those that do not. For Norway, Mexico, and Malaysia, the β3 estimates are positive,

while the estimates for the remaining countries are negative (or zero). Together, these

results are consistent with an interpretation where climate risk leads to substitution effects

between fossil fuel products.

A logical consequence of this heterogeneity argument is that the country-specific cli-

mate risk measures share a non-trivial common (global) component, and that this common

component, rather than the country-specific one, matters for the interaction term. That

is, a substitution between fossil fuel products should only matter to the extent that cli-

mate risk matters for the commodity market as a whole, not for a single country. To

investigate this more formally, we compute the risk component common to all countries

in our sample, and include this component as well as one country-specific (idiosyncratic)

risk measure in (5) and re-estimate the model. As seen from Figure B.7 in the appendix,

the direct effect of both the common and idiosyncratic risk components tend to have a

negative effect on the REERs, as before. Most importantly, however, the effect of inter-

acting the commodity price index with idiosyncratic climate risk is largely insignificant,

while the interaction term between the common component and commodity prices follows

the same pattern as in Figure 3.13

The last row in Figure 3 formalizes these arguments further by showing the results

from a fixed effects panel regression where a separate interaction term between climate

risk and commodity prices is estimated for countries producing and not producing coal.

As seen in the figure, the direct effect of climate risk is highly significant and negative,

13The common component is computed as the first principal component of the country-specific climate risk

measures. The idiosyncratic climate risk measures for each country are then computed as the residuals

from regressing the common component on the original country-specific risk measures. Figure B.4, in

Appendix B, reports the common component. It explains roughly 40% of the cross-country variation.

Another logical consequence of the substitution argument is that an increase in the common component

of climate risk should be associated with less global consumption of coal as well as higher prices for coal

relative to oil and gas in particular. I.e., coal prices should not simply increase because of higher demand

for the commodity. A simple glance at the data suggests that both of these factors seem present (Table

B.1 in Appendix B).
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and the interaction terms have the expected signs: For countries not producing coal,

a simultaneous increase in climate risk and commodity prices leads to a positive and

significant terms-of-trade effect. In contrast, for coal producers, the effect is negative,

although the parameter estimate is insignificant.

3.3 Allowing for non-linearities

To accommodate for the possibility that climate change and the introduction of climate

risk represent a structural break in the relationship between commodity prices and cur-

rencies, we proceed by estimating simple threshold models (Hansen, 2000). In this setup,

the real exchange rate can be described by the following model

REERt =

γ0 + β1ComXt + Γxt + ut if CRt < z

(γ0 + β2) + (β1 + β3)ComXt + Γxt + ut if CRt ≥ z
(6)

with ẑ = arg minz SSR, and where xt is a vector containing the variables rSt , rLt , UNCt,

and GPRt. Accordingly, we assume there are two regimes, and that the difference between

them is driven by the climate risk index and the effect of commodity prices on REER. If

the climate risk index is below the threshold value z, the model in (6) would be the same

as the one in (4). In contrast, if the climate risk index is above the threshold value z, the

intercept term changes to γ̃0 = (γ0 +β2), while the effects of commodity price fluctuations

on REER are captured by β̃1 = (β1 + β3). In line with the discussion above, we expect

high climate risk to be associated with a lower long-run REER value, i.e., γ̃0 < γ0, while

the size of β̃1 relative to β1 is ambiguous.

The threshold regression results marked in light green in Figure 3 report the estimated

β1, β2, and β3 parameters from (6). Qualitatively, the main conclusions from the linear

case continue to hold. However, the non-linear model naturally provides a better fit to the

data, primarily for Norway, Mexico, and Malaysia, and the direct effect of climate risk on

commodity currencies becomes stronger and more negative. While in a high climate risk

regime, i.e., when CRt ≥ z, a one standard deviation increase in climate risk is associated

with an average real exchange rate depreciation of 8 index points.

To probe deeper into the timing of the different regimes, Figure 4 reports the fitted

values from (6) together with color shadings illustrating time periods with high climate

risk regimes. We only report the results for countries where the β2 estimates are sig-

nificant, and for comparison report the actual REER and the benchmark results from

estimating (4). As seen in the figure, the model suggests that the latter part of the

sample, especially the period after 2014, is associated with periods of high climate risk

for almost all countries. Perhaps more surprising is the fact that earlier periods, and in

particular the start of the sample, seem to be associated with a high climate risk regime
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(a) Norway (b) Mexico

(c) Canada (d) Australia

(e) Brazil (f) Russia

Figure 4. REER, benchmark and threshold model fit. The figure shows the REERs (black) and the

in-sample fitted values from the benchmark model (gray: equation (4)) and the threshold model (green:

equation (6)). The shaded areas indicate high climate risk regimes, i.e., when CRt ≥ z in (6).

for at least some of the countries, i.e., Brazil and Russia. Still, it is a common theme

for all countries that the biggest improvements in model fit are obtained after 2014. For

Norway, for example, the benchmark model prediction is off by roughly 6 index points in

2019, whereas the prediction of the climate-augmented threshold regression is off by less

than 2 index points.

Admittedly, the results in Figure 4 also echo our earlier findings that climate risk does

not always matter a lot. Canada is a good example. Here, although climate risk has

a negative effect on the exchange rate, augmenting the benchmark exchange rate model

with this risk does not improve the model fit significantly. In the next section, we further

validate our results by comparing them to using alternative climate risk approximations.

19



3.4 Alternative climate risk approximations

Because climate risk is not directly observed, the literature we speak to has used different

approaches to approximate it based on either “soft” data such as text or “hard” data such

as climate change statistics.

The recent news-based climate risk measure suggested by Engle et al. (2020) builds

on a type of motivation similar to that of our measures, where the news media implicitly

operate as information intermediaries between agents and the state of the world. However,

they use their proposed climate risk measure to explore various ways of dynamically

hedging climate change risk in the asset market, and their climate risk measure does not

try to separate between the different forms of climate change risk. Moreover, their index

can be looked upon as a common (global) risk measure, and builds on a frequency-based

approach, measuring how much climate risk is focused upon in general. In contrast, our

risk measures are country-specific and measure in which context climate risk is focused

upon. Figure 5 shows that these differences matter for describing the relationship between

climate risk and commodity currencies. In particular, by replacing our suggested climate

risk measures with the one proposed by Engle et al. (2020), and re-estimating (5), one

observes that the estimated coefficient of climate risk is inconsistent regarding the sign

and often insignificant. With the exception of South Africa, however, the estimated signs

of the interaction terms are more in line with ours. This is also logically consistent with

our earlier discussion about how global (common) risk potentially affects the β3 estimates.

Another proxy for climate risk used in the literature, see, e.g., Atanasova and Schwartz

(2019), are so-called Climate Change Performance Indexes (CCPI). A well-known set of

measures in this respect are produced by the non-governmental organization Germanwatch

since 2005. Their CCPIs, see Figure B.8, in Appendix B, track countries’ efforts to combat

climate change, and evaluates and compares their climate protection performance based on

indicators covering four categories: GHG Emissions (weighting 40%); Renewable Energy

(weighting 20%); Energy Use (weighting 20%); Climate Policy (weighting 20%). Still,

although the CCPIs measure many aspects of climate change transition risk, they do not

provide theory-consistent results in terms of explaining commodity currency fluctuations.

As seen from Figure 5, replacing our climate risk measures with the country-specific

CCPIs gives a mix of significant and insignificant results with both positive and negative

parameter estimates. One potential reason for these conflicting results might be that

the CCPIs include scores correlated with economic activity, e.g., emissions and energy

use. However, in unreported results we have also used the Global Climate Risk indexes

produced by Germanwatch, capturing extreme weather-related events, reaching similar

conclusions.

Finally, the results marked in red in Figure 5 report estimates from (5) when our
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Figure 5. Exchange rates, commodity prices and climate risk estimates for alternative climate risk

variables. For each country, the figure reports the results from estimating the climate-augmented regres-

sion in (5), using one of the following: our proposed measure of climate risk (Climate risk), the CCPIs

(CCPI ), the climate risk measure suggested by Engle et al. (2020) (Engle et al.), or abnormal tempera-

ture changes (Temperature anomalies). The 95% confidence intervals are computed using HAC-corrected

standard errors. The row labeled Average reports the average coefficient estimates across countries. The

row labeled Panel reports the results from estimating a version of (5) using a fixed effect panel estimator

with standard errors clustered on the country level. A separate interaction term between climate risk

and commodity prices is estimated for countries producing (filled circles) and not producing (diamonds)

coal.

measure of climate risk is replaced by the temperature anomaly statistics described in

Section 2.2. The use of temperature anomalies yields numerical results which are very

similar to our climate risk indexes for Norway. The results are also similar to some extent

for Mexico, Malaysia and Russia, while the results for other countries are more mixed.

On average across all the countries, however, the direct effect (β2) of using temperature

anomalies as a measure of climate risk is very similar to our news-based risk approach.14

The panel data regressions reported in the last row in Figure 5 highlight these points

further: Using the CCPIs gives results counter to theory; Using the Engle et al. (2020)

climate risk index gives similar results to ours for the interaction terms, with one likely

reason being that it captures climate risk common to many countries; Using temperature

anomalies gives qualitative results similar to ours when considering average effects across

14Figure B.9, in Appendix B, shows that all these conclusions hold when considering the alternative climate

risk measures together with the threshold model in (6).
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all the countries, but not necessarily so when considering countries individually. In that

respect, the news-media channel seems important. As stated by Shiller (2001): “signifi-

cant market events generally occur only if there is similar thinking among large groups of

people, and the news media are essential vehicles for the spread of ideas”.

3.5 Allowing for dynamic interactions

The single equation framework adopted in (5) captures the long-run relationship between

commodity currencies and economic fundamentals, but does not take into account the

potential dynamic interaction between the right- and left-hand side variables. To do so,

we estimate VAR models and identify exogenous climate risk innovations using a simple

recursive ordering.

The VAR models can be written as

yt = c+ β1yt−1 + . . .βpyt−p + ut ut ∼ i.i.d.N(0,Σ) (7)

where yt = [x′t REERt CRt]
′, and c, β1, . . . ,βp, and Σ are matrices of suitable di-

mensions containing the model’s unknown parameters.15 Exogenous innovations, εt, are

then identified through the relationship εt = Put where P is a lower triangular matrix

derived from PP ′ = Σ.

We do not take a strong stand on whether climate risk is contemporaneously unaf-

fected by shocks to the other variables in the system, and therefore identify climate risk

innovations by ordering climate risk either first or last in the system. The lag length is set

according to the AIC. For most of the countries, a lag length of three or less is preferred,

and all the roots of the processes’ characteristic equations are found to be inside the unit

circle. More elaborate prior beliefs about the model’s short- and long-run relationships

are entertained later in this section.

Figure 6 reports the response functions of the exchange rates following the climate

risk innovations. The response paths are very similar irrespective of whether climate risk

is ordered first or last in the system, and the climate risk response itself (not reported) is

temporary and returns to its steady state after roughly 40 months (on average). Despite

this, a one standard deviation increase in climate risk leads to a persistent and significant

depreciation of the real exchange rate in Norway, Malaysia, Canada and Brazil. For

Mexico, Australia and Russia, the responses are either barely significant or less persistent,

but all have the same expected negative sign. Only for South Africa do we obtain results

that run counter to our earlier analysis. However, for this country, the earlier estimates

15Since the VARs are highly parameterized models, and since the rLt variables are generally found to be the

least important variables when estimating (5), the long-run interest rate differentials are dropped from

the xt vector here, i.e., xt = [rSt UNCt GPRt ComXt]
′.
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(a) Norway (b) Mexico (c) Malaysia (d) Canada

(e) Australia (f) South Africa (g) Brazil (h) Russia

Figure 6. VAR and REER responses. Each graph reports the REER response following a one standard

deviation exogenous innovation to the climate risk variable. The innovations are computed from two

different recursive orderings, where the climate risk variable is ordered either first (solid black) or last

(dotted black) in the system. 95% confidence bands are constructed using a residual bootstrap.

were also associated with a large degree of uncertainty. It is also the case that climate

change transition risk is generally not significantly affected by the other variables in the

system. Figure B.10, in Appendix B, illustrates this, and reports the climate risk response

following either an exogenous commodity price or REER innovation.

To alleviate the concern that climate change transition risk is driven solely by actual

temperature change statistics, we augment the VAR with the temperature anomaly series.

In this case as well, the conclusions from above remain robust (Figure 7). In fact, under

the reasonable assumption that temperature anomalies are contemporaneously exogenous

to the remaining variables in the system, we order the temperature statistics first in the

system and find mostly insignificant REER responses following an exogenous temperature

shock. In contrast, the REER responses following climate change transition risk shocks

are mostly negative and significant, as before. Figure B.11, in Appendix B, reports the

variance decomposition for the responses reported in Figure 7. At the two- and six-

year horizons, the climate risk shocks explain between 15 and 25 percent of the average

variation in the REERs across countries. Temperature innovations, on the other hand,

hardly explain any of the observed commodity currency fluctuations.

To entertain the possibility that much larger lag lengths are needed to capture the

dynamic interaction between temperature anomalies, climate risk, and commodity cur-

rencies, and to discipline the long-run behavior of the system, we have also estimated the

VARs using the prior long-run distributions proposed by Giannone et al. (2019). In this
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(a) Norway (b) Mexico (c) Malaysia (d) Canada

(e) Australia (f) South Africa (g) Brazil (h) Russia

Figure 7. VAR and REER responses including temperature anomalies. Each graph reports the REER

response following a one standard deviation exogenous innovation to either the climate risk variable

(solid line) or the temperature anomaly series (dotted line). The impulse responses are computed using a

recursive ordering, where the temperature anomalies and climate risk variable are ordered first and second

in the system, respectively. 95% confidence bands are constructed using a residual bootstrap. The red

and green lines report posterior mode estimates when using the prior long-run distributions proposed by

Giannone et al. (2019) when estimating the model.

framework, prior views about common trends shared by the variables within the system

can be elicited, and over-fitting is avoided by efficiently shrinking the VAR coefficients

towards zero. Accordingly, the VARs are specified by up to 12 lags, and we (apriori) allow

temperature anomalies and climate risk to share a common stochastic trend, and assume

that their difference is stationary. Likewise, we impose a prior view consistent with (5),

where a linear combination of rSt , ComXt, CRt, and temperature anomalies captures the

long-run behavior of the REER. However, as seen from the red and green lines in Figure

7, which report the posterior modes of the estimates, our earlier qualitative conclusions

are unaffected by this alternative modeling strategy.

Finally, in terms of the pricing implications of climate risk, existing studies in the liter-

ature have primarily been concerned with firms and firm value (see, e.g., In et al. (2017),

Atanasova and Schwartz (2019), Bolton and Kacperczyk (2020), Hsu et al. (2020), Engle

et al. (2020)). Because natural resource income is an important part of aggregate income

creation in major commodity exporters, the mechanisms that give rise to a persistent ex-

change rate depreciation might also affect forward looking asset markets at the national

level. To address this linkage we therefore include the countries’ (log) real stock mar-

ket indexes in the VAR model, and analyze their responses following exogenous climate
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(a) Norway (b) Mexico (c) Malaysia (d) Canada

(e) Australia (f) South Africa (g) Brazil (h) Russia

Figure 8. VAR and stock market responses. Each graph reports the aggregate stock market response

following a one standard deviation exogenous innovation to the climate risk variable. The innovations

are computed from two different recursive orderings, where the climate risk variable is ordered either first

(solid black) or last (dotted black) in the system. 95% confidence bands are constructed using a residual

bootstrap. To reduce the dimensionality of the augmented VAR system, the UNCt and GPRt variables

are excluded from the yt vector when estimating the VARs. The y-axis are in log scale.

change transition risk innovations.16 As seen in Figure 8, a one standard deviation in-

crease in climate risk leads to persistent and significantly lower stock market valuations in

Mexico, Australia, South Africa, and Brazil. For Norway, Malaysia, Canada, and Russia

the response paths are not significantly different from zero, but still tend to be negative

for Malaysia and Canada. At the same time, the REER responses from this augmented

system are qualitatively the same as before (Figure B.12 in Appendix B).17

4 Additional results and robustness

As described in Section 2.2, our main conclusions are robust in a number of different

modeling choices related to how the climate risk indexes are constructed. Below we

discuss how our main results are robust along three other dimensions as well.

First, our qualitative conclusions are unlikely to be driven by other important de-

velopments in the commodity market during the last decade(s), such as the depletion of

16The stock market variables are sourced from Macrobond and are the MSCI IMI Total Return indexes in

local currency. The series are deflated by domestic CPI values.
17Even within major commodity exporters some sectors might benefit at the expense of others when faced

with climate change transition risk. Indeed, the theoretical mechanism we build on predicts that this will

happen. In the case of Norway, we explore this theme further in Appendix C which reports how changes

in climate risk correlates with returns in 10 different (value weighted) industry portfolios over time.
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remaining reserves and the technological advances in shale-oil extraction. In particular, as

remaining reserves are drawn down, commodity production inevitably has to slow down.

Similarly, the growth in shale-oil production has likely increased the supply elasticities in

the (global) market for oil (Bjørnland et al., 2020). In turn, this potentially reduces the

price impact of (demand-driven) commodity market shocks. Still, augmenting (5) and

(6) with remaining reserves, or the growth in shale-oil production (see Appendix A), has

very little effect on our main estimates (Figure B.13 in Appendix B).

Second, we have performed a more data-driven variable selection approach, allowing

for potentially up to 13 different “control” variables when estimating (5). The variables,

in addition to the ones already in xt, are: The remaining reserves and shale-oil production

variables discussed above; The CCPIs and temperature anomalies; Alternative (global)

uncertainty measures denoted V IXCom and V IXER; Country-specific and total OECD

composite leading indicators (see Appendix A). All variables are allowed to affect the

REER contemporaneously, and with up to three period lags. Accordingly, the augmented

x̃t vector consists of 50 elements. To still favor a small model size, and reduce noise

and potential biases, a double selection procedure for selecting the relevant variables is

implemented (Belloni et al., 2014). Naturally, the model fit increases with this more

flexible modeling approach. The estimated climate risk and interaction term coefficients

also become somewhat more uncertain, but the sign of the coefficients still aligns well

with our main results (Figure B.14 in Appendix B).

Third, we have estimated the VAR models from Section 3.5, augmented with the

extra variables in the x̃t vector. In none of these alternative specifications, where the

extra variables are added one at a time, do our qualitative conclusions change (Figure

B.15 in Appendix B).

5 Conclusion

In this article we relate climate change transition risk to concerns about structural changes

away from fossil fuel production voiced in the public discourse, and use news media

coverage and word embedding models to derive news-based and country-specific measures

of such risk. We then use these risk indexes to explain recent exchange rate developments

in eight major commodity exporters.

In line with economic theory on structural transformation due to changes in natural

resource income, and standard terms-of-trade arguments, we document that when climate

risk is high, these commodity currencies experience a persistent depreciation and the rela-

tionship between commodity prices and currencies tends to become weaker. In addition,

our results indicate that climate risk is associated with substitution effects between fossil
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fuel products, potentially benefiting exporters of, e.g., petroleum products at the expense

of exporters of, e.g., coal.

A growing literature investigates how climate change is affecting economic outcomes.

Still, in terms of pricing implications, existing studies have primarily been concerned with

firms and firm value. Our study contributes by showing how climate change transition risk

matters at the national level by affecting commodity currencies. In line with this finding,

however, we also document that unexpected increases in climate change transition risk

tend to cause persistently lower aggregate stock market valuations.

The novelty of our study is related to how we derive the risk indexes. Indeed, we

show that using alternative climate risk approximations based on already established

hard climate change or economic data does not provide theory consistent results, whereas

our news-based risk measures do. Thus, although our application is specific to com-

modity currencies, the methodology we propose is applicable in a wide range of settings

where information diffusion, belief formation, and the social processes that shape eco-

nomic thinking and behavior are potentially important.
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Appendices

Appendix A Data Description

Exchange rates and weights. The real effective exchange rates indices REERtc are

obtained from the Bank for International Settlements. They are constructed for each

country through trade weighting its exchange rates with up to 39 of its trading partner

countries (with the Eurozone considered as one entity). We also obtain the Bank for

International Settlement’s used trade weights wtci of country c for its trading partner i

at time t to construct interest rate differentials. The weights are available for three-year

periods: 1999-2002, 2003-2005, and 2014-2016. As trade weights for the period 2017-2019

were not yet available, we simply assumed the trade weights of the previous period.

Interest rates and inflation. Average values of 3-month Treasury rates and 10-year

government bonds serve as nominal short-term and long-term interest rates respectively.

These are obtained for 29 countries (one of the ‘countries’ is the Eurozone) that together

make up 87.6% of global GDP according to the IMF World Economic Outlook 2019.

Hence, we do not consider all trading partners of a country but only the bulk. The

majority of 3-month Treasury and 10-year government bond series are obtained from

the Global Financial Data database and all remaining missing series are obtained from

Macrobond and the OECD database. The last required short-term interest rate for the

analysis (for the country China) is available from January 2002 on. Real short-term inter-

est rates rS∗tc and long-term interest rates rLtc for country c are created through subtracting

year-on-year inflation from nominal interest rates. For consistency reasons, the inflation

series for all countries are obtained from the Bank of International Settlements, with the

exception of Taiwan and Colombia, which were not available. These two variables are

therefore obtained from Global Financial Data.

Interest rate differentials. The real short-term interest rate differential for country

c is created by taking the difference between the real short-term interest rate and the trade-

weighted real short-term interest rates of its trading 28 partners: rStc = rS∗tc −
∑28

i=1wtci∗rS∗ti ,

The long-term interest rate differentials rL∗tc are created analogously to the short-term

interest rate differentials. We hope to capture the forward guidance of central banks by

adding the long-term interest rate differentials to the regressions. As forward guidance

began to play a role only since the financial crisis, we multiply the real interest differential

by a dummy that takes the value one from January 2009 on and zero before that.

Commodity price indices. We use three different series of commodity price indices,

for each country, from Gruss and Kebhaj (2019): The commodity price indices weighted

by time-varying weights of the net export share relative to GDP, which serves as ComXct
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in the main analysis. The same measure constructed with fixed weights as well as the

commodity price indices are weighted by time-varying weights of the export share relative

to GDP serve as ComXct in a robustness tests.

Commodity price. Commodity prices and indices of oil, gas and coal are obtained

from the IMF Commodity Data Portal. The price (index) of oil is calculated as the

average of the WTI (40 API), Brent light blend (38 API) and Dubai Fateh (32 API).

The price (index) of gas is calculated as the average of the U.S. Henry Hub Terminal in

Louisiana, the Netherlands TTF Natural Gas Forward Day Ahead and the Indonesian

Liquefied Natural Gas in Japan. The price (index) of coal is calculated as the average of

the Australian Thermal Coal and the South African Export Price.

Growth of the share of tight oil supply. The U.S. tight oil production and the

global crude oil production (including lease condensates) is obtained from the U.S. Energy

Information Administration. The growth of the tight oil production as a share of global

oil production is calculated through the month-to-month difference of the log of this share.

Uncertainty measures. We obtained two different measures. The volatility index

for financial markets UNCt is obtained from the Chicago Board Options Exchange, which

retrieves the constant 30-day expected volatility from call and put options on the S&P500.

The (global) geopolitical risk index GPRt is obtained from Caldara and Iacoviello (2018).

In addition, we obtained the Equity Market Volatility Tracker for Commodity Markets

V IXCom
t as well as the Equity Market Volatility Tracker for Exchange Rates V IXER

t from

the FRED database. Both series are constructed by Baker et al. (2019).

Fuel net export shares. Exported fuels by country are obtained from the World

Integrated Trade Solution for the years 1998 until 2019. The term ’fuels’ describes all

products classified in section 27 of the HS code list. The Subsection 01 to 16 of section

27 are further assigned by us to either oil, gas, coal or none of these fossil fuels based on

its closeness of the class of products.

Reserves, production and consumption of fossil fuels. Reserves, consumption

and production of oil, gas and coal are obtained from the BP Statistical Review of World

Energy from 2002 until 2020.

Composite leading indicators. The leading indicators are obtained from the

OECD, and are the amplitude-adjusted CLI series. The common component is taken

as the OECD average. For Malaysia, we use the CLI series for the five biggest economies

in Asia, as a country-specific index is not included in the database.
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Appendix B Additional results

Figure B.1. Climate risk and word selection robustness. The red markers report the mean estimate

from using the main climate risk indexes and the baseline climate-augmented regression described in

Section 3.2. The green markers report the mean estimate, in addition to the lower and upper 2.5 and

97.5 percentile, from over 30000 random leave-one-out simulations of the underlying climate risk indexes.
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(a) Climate-augmented

(b) Thresholds

Figure B.2. Climate risk and smoothing robustness. For each country the figures report the estimated

climate risk coefficients from (5) and (6) using different degrees of smoothing when constructing CR.

The main results are produced using seven-month moving average (Smoothing window: 7). The 95%

confidence intervals are computed using HAC-corrected standard errors.
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Figure B.3. Climate risk and commodity price index robustness. For each country the figures report

the estimated climate risk coefficients from (5) and (6) using three different definitions of the commodity

price index provided by Gruss and Kebhaj (2019). The main results are produced using net-export

shares and a rolling window for the weights (Net Export Index, Rolling). The 95% confidence intervals

are computed using HAC-corrected standard errors.

Figure B.4. Common components. The figure reports the first principal component estimate from

the cross-sectional residuals from (4) (black) and from the individual climate risk indexes (green). The

common residual and climate risk components explain 28 and 42 percent of the variation in the data,

respectively.
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(a) Norway (b) Mexico

(c) Malaysia (d) Canada

(e) Australia (f) South Africa

(g) Brazil (h) Russia

Figure B.5. Climate risk (green) and temperature anomalies (red). The dotted lines report the raw

series. The solid lines report the data when a Hodrick–Prescott filter (Hodrick and Prescott (1997)), with

a smoothing parameter set to 1600, is used to extract the low-frequency fluctuations from the series.

38



Figure B.6. Gas, oil, and coal production relative to GDP. For each country, the figure reports a

standard box plot of the production shares for the period 2002 to 2019. The underlying data is sourced

from British Petroleum Company (2020).

Figure B.7. Exchange rates, commodity prices and common and idiosyncratic climate risk estimates.

The figure reports the results from estimating (5) using both the common (CC CR) and idiosyncratic

(CSC CR) climate risk variables. The 95% confidence intervals are computed using HAC-corrected

standard errors.
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(a) Norway (b) Mexico (c) Malaysia (d) Canada

(e) Australia (f) South Africa (g) Brazil (h) Russia

Figure B.8. Climate Change Performance Indexes (CCPI). The CCPIs report each country’s rank and

are produced by Germanwatch since 2005. The statistics are sampled on a yearly frequency, and we

assume that the rank stays the same within each year.

Figure B.9. Exchange rates, commodity prices and climate risk estimates for alternative climate risk

variables. For each country, the figure reports the results from estimating the threshold regression in (6),

using one of the following: our proposed measure of climate risk (Climate risk), the CCPIs (CCPI ), the

climate risk measure suggested by Engle et al. (2020) (Engle et al.), or abnormal temperature changes

(Temperature anomalies). The 95% confidence intervals are computed using HAC-corrected standard

errors.
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(a) Norway (b) Mexico (c) Malaysia (d) Canada

(e) Australia (f) South Africa (g) Brazil (h) Russia

Figure B.10. VAR and climate risk responses. Each graph reports the CR response following a one

standard deviation exogenous innovation to either the REER (solid line) or commodity prices (dotted

line). The innovations are computed from a system where the climate risk variable is ordered first in the

system. 95% confidence bands are constructed using a residual bootstrap.

(a) Climate risk shock (b) Temperature anomaly shock

Figure B.11. VAR and REER variance decompositions. Each graph reports how much of the variance in

the REER is explained by a one standard deviation exogenous innovation to either the climate risk variable

or the temperature anomaly series. The results are computed using a recursive ordering, where the

temperature anomalies and climate risk variable are ordered first and second in the system, respectively.
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(a) Norway (b) Mexico (c) Malaysia (d) Canada

(e) Australia (f) South Africa (g) Brazil (h) Russia

Figure B.12. VAR and REER responses, controlling for the stock market. Each graph reports the

REER response following a one standard deviation exogenous innovation to the climate risk variable.

The innovations are computed from the same VAR as used in Figure 8, with the climate risk variable

ordered first in the system. The mean response paths are reported with a dotted line. 95% confidence

bands are constructed using a residual bootstrap. For comparison the benchmark responses, from Figure

6, are reported with a solid line.
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(a) Climate-augmented

(b) Threshold

Figure B.13. Exchange rates, commodity prices and climate risk estimates with additional controls.

For each country, the figure reports the results from estimating the climate-augmented regressions in (5)

or (6), augmented with either remaining reserves, shale-oil growth, or temperature anomalies. The 95%

confidence intervals are computed using HAC-corrected standard errors.
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Figure B.14. Exchange rates, commodity prices and climate risk estimates. Baseline regression (equa-

tion (5)) and double selection results. The 95% confidence intervals are computed using HAC-corrected

standard errors. The double selection is computed as follows: First, the REER, CR, and ComX × CR
variables are regressed separately on all the variables in the augmented X̃ct vector using the LASSO

estimator (Tibshirani (1996)). 100 different penalization parameters together with the BIC are used to

tune the amount of regularization. Next, after these three penalized regressions, the REERs are regressed

on (using OLS) CR, ComX × CR, and the union of the control variables selected in step one.

(a) Norway (b) Mexico (c) Malaysia (d) Canada

(e) Australia (f) South Africa (g) Brazil (h) Russia

Figure B.15. VAR estimates with extra control variables and REER responses. Each graph reports the

REER response following a one standard deviation exogenous innovation to the climate risk variable. The

climate risk variable is ordered last in the system. The VAR includes the variables in yt in addition to one

of the following: remaining reserves, shale-oil production growth, (global) uncertainty measures denoted

V IXCom and V IXER, country-specific and total OECD composite leading indicators. The dotted black

line and 95% confidence bands represent the “benchmark” results presented in Figure 6. The other lines

represent the mean REER response path from each of the alternative model specifications.
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Table B.1. Climate risk and commodity market correlations. The table reports the correlation between

the common component of climate risk and relative prices of gas, oil, and coal, and the global consumption

of the same commodities. The correlations between climate risk and prices are computed using monthly

time series. The global consumption growth statistics are collected from British Petroleum Company

(2020), and are sampled on a yearly frequency and measured in Exajoules. *, **, and *** denote the

10%, 5%, and 1% significance level, respectively.

Relative prices Relative global consumption

Gas−Oil Gas− Coal Oil − Coal Gas−Oil Gas− Coal Oil − Coal

Common climate risk component -0.09 -0.13* -0.11 0.59*** 0.66*** -0.01

Appendix C The Norwegian stock market and cli-

mate risk

Even within major commodity exporters some sectors might benefit at the expense of

others when faced with climate change transition risk. Indeed, the theoretical mechanism

we build on predicts that this will happen. In the case of Norway, Figure C.1 reports how

changes in climate risk correlates with returns in 10 different (value weighted) industry

portfolios over time. In each of the regressions we control for the traditional risk factors

and changes in commodity prices, and use a 5-year rolling estimation window. Thus,

parameter estimates are obtained for the period 2007 to 2019. For most of the sectors,

changes in climate risk have an insignificant loading on average. Consistent with our

earlier results for the foreign exchange market, however, we observe that the climate

change transition risk loading on returns in the Energy sector has a strong negative

drift, starting before 2014. Towards the latter part of the sample, the loading becomes

negative and significant. Conversely, returns in the Telecommunication and Consumer

Discretionary sectors, and to some extent also the IT and Material sectors, become more

positively correlated with changes in climate risk over time.

Figure C.2 shows the cumulative returns of a simple zero-cost trading strategy utilizing

the regression results from above. At each point in time, the strategy goes one NOK long

and short in the industry portfolios having a significant positive and negative climate risk

factor loading, respectively. The portfolio is re-balanced each month, and for a trade to

take place at least one sector needs to be on each side. As seen in the figure, a clear break

occurs roughly midway in the sample. However, for the latter part of the sample, the

strategy creates risk-adjusted returns. The estimated alpha suggest that an investment

strategy that purchases shares in industries with a positive climate change transition risk

exposure and sells shares in industries with a negative exposure earns abnormal returns

of roughly 12 basis points per year.
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(a) Energy (b) Material (c) Industry (d) Cons. Disc. (e) Cons. Stapl.

(f) Health (g) Finance (h) IT (i) Telecom. (j) Utilities

Figure C.1. Industry returns and factor loadings. The change in climate change transition risk ∆CRt

is related to the return (minus the risk free rate) of industry portfolio j by:

rtj = µj + β1jMRt + β2jSMBt + β3jHMLt + β4jUMDt + β5jLIQt + β6j∆ComXt + β7j∆CRt + utj

where MRt, SMBt, HMLt, MONt, and LIQt are the traditional market (MR), size (SMB), book-to-

market (HML), momentum (UMD), and liquidity (LIQ) risk factors (Fama and French (1993), Jegadeesh

and Titman (1993), Carhart (1997), and Pastor and Stambaugh (2003). See Odegaard (2017) for the

construction of these for the Norwegian market.) The equation is estimated using a 5-year rolling window.

I.e., the estimates reported in, e.g., 2007, reflect the average relationship in the period 2002 to 2007. The

graphs reports the evolution of the t-statistic for β̂6j (black) and β̂7j (green). The dotted lines represent

the 95% and 90% critical values.

Although simple, these results speak to a growing literature in finance investigating the

pricing implications of different forms of climate risk (see, e.g., In et al. (2017), Atanasova

and Schwartz (2019), Bolton and Kacperczyk (2020), Hsu et al. (2020), Engle et al.

(2020)). Thus far, however, the literature has produced conflicting results regarding

the relationship between such risk and prices. Potential reasons for the conflicting results

might be the time period used in the analysis, how climate risk is defined, e.g., transitional

or physical climate risk, or the market being studied. Our abnormal return estimate for

the 2014 to 2019 period is very small but statistically significant, and questions whether

there is a premium related to sectors with a direct (negative) exposure towards climate

change transition risk in the Norwegian stock market for this time period.
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Evaluation sample

2007 - 2019 2007-2013 2014-2019

alpha 0.00 -0.00 0.01**

MR -0.07 -0.02 -0.29*

SMB -0.33*** -0.14 -0.57***

HML 0.03 0.01 -0.02

LIQ 0.24** 0.12 0.28*

UMD -0.03 -0.05 -0.03

N 149 74 76

R2 0.10 0.05 0.20

Figure C.2. Cumulative and risk-adjusted returns. The figure graphs the cumulative returns from

a zero-cost investment strategy that goes long and short in the industry portfolios having a significant

positive and negative climate risk factor loading, respectively. The cumulative returns for the period 2007-

2013 (2014-2019) are reported in black (green). The table reports the risk-adjusted returns (alpha) from

the investment strategy. Three different evaluation periods are considered. MRt, SMBt, HMLt, MONt,

and LIQt are the traditional market (MR), size (SMB), book-to-market (HML), momentum (UMD), and

liquidity (LIQ) risk factors (Fama and French (1993), Jegadeesh and Titman (1993), Carhart (1997), and

Pastor and Stambaugh (2003). See Odegaard (2017) for the construction of these for the Norwegian

market.). *, **, and *** denote the 10%, 5%, and 1% significance level, respectively.
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