Show simple item record

dc.contributor.authorAastveit, Knut Are
dc.contributor.authorter Ellen, Saskia
dc.contributor.authorMantoan, Giulia
dc.date.accessioned2025-02-07T09:37:22Z
dc.date.available2025-02-07T09:37:22Z
dc.date.issued2024
dc.identifier.isbn978-82-8379-334-5
dc.identifier.issn1502-8143
dc.identifier.urihttps://hdl.handle.net/11250/3176802
dc.description.abstractWe propose an easy-to-implement framework for combining quantile forecasts, applied to forecasting GDP growth. Using quantile regressions, our combination scheme assigns weights to individual forecasts from different indicators based on quantile scores. Previous studies suggest distributional variation in forecasting performance of leading indicators: some indicators predict the mean well, while others excel at predicting the tails. Our approach leverages this by assigning different combination weights to various quantiles of the predictive distribution. In an empirical application to forecast US GDP growth using common predictors, forecasts from our quantile combination outperform those from commonly used combination approaches, especially for the tails.en_US
dc.language.isoengen_US
dc.publisherNorges Banken_US
dc.relation.ispartofseriesWorking paper;14/2024
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.subjectdensity forecastsen_US
dc.subjectforecast combinationsen_US
dc.subjectquantile regressionen_US
dc.subjectdownside risken_US
dc.titleQuantile combination : an application to US GDP growth forecastsen_US
dc.typeWorking paperen_US
dc.description.versionpublishedVersionen_US
dc.subject.nsiVDP::Samfunnsvitenskap: 200::Økonomi: 210::Samfunnsøkonomi: 212en_US
dc.source.pagenumber53en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal